K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2020

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{y+z+1}{x}=\frac{x+z+2019}{y}=\frac{x+y-2020}{z}=\frac{y+z+1+x+z+2019+x+y-2020}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

\(\Rightarrow2=\frac{1}{x+y+z}\)\(\Rightarrow x+y+z=\frac{1}{2}\)

Ta có: 

​+) \(\frac{y+z+1}{x}=2\)\(\Rightarrow y+z+1=2x\)\(\Rightarrow x+y+z+1=3x\)\(\Rightarrow\frac{1}{2}+1=3x\)\(\Rightarrow3x=\frac{3}{2}\)\(\Rightarrow x=\frac{1}{2}\)

+) \(\frac{x+z+2019}{y}=2\)\(\Rightarrow x+z+2019=2y\)\(\Rightarrow x+y+z+2019=3y\)\(\Rightarrow\frac{1}{2}+2019=3y\)\(\Rightarrow3y=\frac{4039}{2}\)\(\Rightarrow y=\frac{4039}{6}\)

+) \(\frac{x+y-2020}{z}=2\)\(\Rightarrow x+y-2020=2z\)\(\Rightarrow x+y+z-2020=3z\)\(\Rightarrow\frac{1}{2}-2020=3z\)\(\Rightarrow3z=\frac{-4039}{2}\)\(\Rightarrow z=\frac{-4039}{6}\)

Lại có: \(A=2016x+y^{2017}+z^{2017}=2016.\frac{1}{2}+\left(\frac{4039}{6}\right)^{2017}+\left(\frac{-4039}{6}\right)^{2017}=4032+\left(\frac{4039}{6}\right)^{2017}-\left(\frac{4039}{6}\right)^{2017}=4032\)

11 tháng 2 2019

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)

\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{x+y+z}-\frac{1}{z}\)

\(\Leftrightarrow\frac{x+y}{xy}=\frac{z}{\left(x+y+z\right).z}-\frac{x+y+z}{z.\left(x+y+z\right)}=\frac{-x-y}{z.\left(x+y+z\right)}\)

\(\Leftrightarrow\frac{x+y}{xy}=\frac{x+y}{-z.\left(x+y+z\right)}\)

TH1: x+y=0

=> x=-y => P=0

TH2: xy=-z.(x+y+z)

\(\Leftrightarrow xy=-xz-zy-z^2\Leftrightarrow xy+xz+zy+z^2=0\Leftrightarrow x.\left(y+z\right)+z.\left(y+z\right)=0\)

\(\Leftrightarrow\left(x+z\right).\left(y+z\right)=0\Leftrightarrow\orbr{\begin{cases}x=-z\\y=-z\end{cases}\Rightarrow P=0}\)

16 tháng 8 2019

Tham khảo tại đây: Câu hỏi của dbrby - Toán lớp 10 | Học trực tuyến

12 tháng 8 2016

a, Từ x+y=1

=>x=1-y

Ta có: \(x^3+y^3=\left(1-y\right)^3+y^3=1-3y+3y^2-y^3+y^3\)


\(=3y^2-3y+1=3\left(y^2-y+\frac{1}{3}\right)=3\left(y^2-2.y.\frac{1}{2}+\frac{1}{4}+\frac{1}{12}\right)\)

\(=3\left[\left(y-\frac{1}{2}\right)^2+\frac{1}{12}\right]=3\left(y-\frac{1}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\) với mọi y

=>GTNN của x3+y3 là 1/4

Dấu "=" xảy ra \(< =>\left(y-\frac{1}{2}\right)^2=0< =>y=\frac{1}{2}< =>x=y=\frac{1}{2}\) (vì x=1-y)

Vậy .......................................

b) Ta có: \(P=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{y+x}\)

\(=\left(\frac{x^2}{y+z}+x\right)+\left(\frac{y^2}{z+x}+y\right)+\left(\frac{z^2}{y+z}+z\right)-\left(x+y+z\right)\)

\(=\frac{x\left(x+y+z\right)}{y+z}+\frac{y\left(x+y+z\right)}{z+x}+\frac{z\left(x+y+z\right)}{y+z}-\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{y+x}-1\right)\)

Đặt \(A=\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{y+x}\)

\(A=\left(\frac{x}{y+z}+1\right)+\left(\frac{y}{z+x}+1\right)+\left(\frac{z}{y+x}+1\right)-3\)

\(=\frac{x+y+z}{y+z}+\frac{x+y+z}{z+x}+\frac{x+y+z}{y+x}-3\)

\(=\left(x+y+z\right)\left(\frac{1}{y+x}+\frac{1}{y+z}+\frac{1}{z+x}\right)-3\)

\(=\frac{1}{2}\left[\left(x+y\right)+\left(y+z\right)+\left(z+x\right)\right]\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)-3\ge\frac{9}{2}-3=\frac{3}{2}\)

(phần này nhân phá ngoặc rồi dùng biến đổi tương đương)

\(=>P=\left(x+y+z\right)\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{y+x}-1\right)\ge2\left(\frac{3}{2}-1\right)=1\)

=>minP=1

Dấu "=" xảy ra <=>x=y=z

Vậy.....................

31 tháng 5 2016

P=19/8

31 tháng 5 2016

giải rõ ra mới biết

8 tháng 4 2018

cũng bằng 3

12 tháng 3 2023

=���+�+1+�����+��+�+����2��+���+��

=���+�+1+����+�+1+1��+�+1(Vıˋ ���=1)

=�+��+1��+�+1

=1

 

 

30 tháng 7 2016

Đề gốc là \(P=\frac{x}{\sqrt{y}}+\frac{y}{\sqrt{z}}+\frac{z}{\sqrt{x}}\)

\(\frac{P}{4}=\frac{x}{2.2\sqrt{y}}+\frac{y}{2.2\sqrt{z}}+\frac{z}{2.2\sqrt{x}}\)

Áp dụng BĐT Côsi:

\(2.2.\sqrt{x}\le x+2^2=x+4\)

\(\Rightarrow\frac{P}{4}\ge\frac{x}{y+4}+\frac{y}{z+4}+\frac{z}{x+4}=\frac{x^2}{xy+4x}+\frac{y^2}{yz+4y}+\frac{z^2}{zx+4z}\)

\(\ge\frac{\left(x+y+z\right)^2}{xy+yz+zx+4\left(x+y+z\right)}\ge\frac{\left(x+y+z\right)^2}{\frac{1}{3}\left(x+y+z\right)^2+4\left(x+y+z\right)}=\frac{3\left(x+y+z\right)}{\left(x+y+z\right)+12}\)

\(=3-\frac{36}{x+y+z+12}\ge3-\frac{36}{12+12}=\frac{3}{2}\)

\(\Rightarrow P\ge6\)

Dấu bằng xảy ra khi \(x=y=z=4\)

28 tháng 7 2016

\(Q=\left(1+\frac{\alpha}{x}\right)\left(1+\frac{\alpha}{y}\right)\left(1+\frac{\alpha}{z}\right)=\left(\frac{\alpha+x}{x}\right)\left(\frac{\alpha+y}{y}\right)\left(\frac{\alpha+z}{z}\right)\)

Mà  \(\alpha=x+y+z\)  (theo gt) nên ta có thể viết  \(Q\)  như sau:

\(Q=\left(\frac{2x+y+z}{x}\right)\left(\frac{x+2y+z}{y}\right)\left(\frac{x+y+2z}{z}\right)=\left(2+\frac{y+z}{x}\right)\left(2+\frac{x+z}{y}\right)\left(2+\frac{x+y}{z}\right)\)

Đặt  \(a=\frac{y+z}{x};\)  \(b=\frac{x+z}{y};\)  và  \(c=\frac{x+y}{z}\)  \(\Rightarrow\)  \(a,b,c>0\)

Khi đó, biểu thức  \(Q\)  được biểu diễn theo ba biến  \(a,b,c\)  như sau:

\(Q=\left(2+a\right)\left(2+b\right)\left(2+c\right)=4\left(a+b+c\right)+2\left(ab+bc+ca\right)+abc+8\)

\(\Rightarrow\)  \(Q-8=4\left(a+b+c\right)+2\left(ab+bc+ca\right)+abc\)

Mặt khác, ta lại có:

\(a+b+c=\frac{y+z}{x}+\frac{x+z}{y}+\frac{x+y}{z}\)

nên   \(a+b+c+3=\frac{y+z}{x}+1+\frac{x+z}{y}+1+\frac{x+y}{z}+1\)

\(\Rightarrow\) \(a+b+c+3=\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

Lại có:   \(\hept{\begin{cases}x+y+z\ge3\sqrt[3]{xyz}\text{ (1)}\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge3\sqrt[3]{\frac{1}{xyz}}\text{ (2)}\end{cases}}\)   (theo bđt  \(Cauchy\)  lần lượt cho hai bộ số gồm các số không âm)

Nhân hai bđt  \(\left(1\right);\)  và  \(\left(2\right)\)  vế theo vế, ta được bđt mới là:

\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\)

Theo đó,  \(a+b+c+3\ge9\)  tức là  \(a+b+c\ge6\)

\(\Rightarrow\)  \(4\left(a+b+c\right)\ge24\)  \(\left(\alpha\right)\)

Bên cạnh đó, ta cũng sẽ chứng minh  \(abc\ge8\)  \(\left(\beta\right)\)

Thật vậy, ta đưa vế trái bđt cần chứng minh thành một biểu thức mới.

\(VT\left(\beta\right)=abc=\frac{\left(x+y\right)\left(y+z\right)\left(x+z\right)}{xyz}\ge\frac{2\sqrt{xy}.2\sqrt{yz}.2\sqrt{xz}}{xyz}=\frac{8xyz}{xyz}=8=VP\left(\beta\right)\)

Vậy, bđt  \(\left(\beta\right)\)  được chứng minh.

Từ đó, ta có thể rút ra được một bđt mới.

\(ab+bc+ca\ge3\sqrt[3]{\left(abc\right)^2}\ge3\sqrt[3]{8^2}=12\) (theo cách dẫn trên)

\(\Rightarrow\) \(2\left(ab+bc+ca\right)\ge24\)  \(\left(\gamma\right)\)

Cộng từng vế 3 bđt  \(\left(\alpha\right);\)  \(\left(\beta\right)\)  và  \(\left(\gamma\right)\), ta được:

\(Q-8\ge24+8+24=56\)

Do đó,  \(Q\ge64\)

Dấu   \("="\)  xảy ra khi và chỉ khi  \(a=b=c\)  \(\Leftrightarrow\)  \(x=y=z=2\)

Vậy,  \(Q_{min}=64\)  khi  \(\alpha=6\)