K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2015

Bạn vào câu hỏi tương tự nhé !!!

10 tháng 12 2015

ở câu hỏi tương tự Đinh Tuấn Việt câu hỏi của Clash Of Clans đã làm đúng rồi đó 

Nhớ tick mình nha

15 tháng 5 2016

n là số tự nhiên lớn hơn 6 nên n có thể có các dạng sau:

+)  Với n = 6k + 1 (k $\in$ N*) 

=> n = 3k + (3k + 1)

3k; 3k + 1 là 2 số tự nhiên liên tiếp => chúng nguyên tố cùng nhau 

+) Với n = 6k + 3 (k $\in$ N*) 

Viết n = (3k +1) + (3k +2) 

mà (3k +1); (3k+2) là 2 số tự nhiên liên tiếp => chúng nguyên tố cùng nhau

+) Tương tự với n = 6k + 5 (k $\in$ N*) 

Viết n = (3k+2) + (3k +3)

mà 3k + 2 và 3k + 3 nguyên tố cùng nhau

+) Với n = 6k + 2 (k $\in$ N*) 

Viết n = (6k -1) + 3

Gọi d = ƯCLN (6k - 1; 3)

=> 6k - 1 chia hết cho d;

    3 chia hết cho d => 3. 2k = 6k chia hết cho d

=> 6k - (6k -1) = 1 chia hết cho d => d = 1

do đó, 6k - 1 và 3 nguyên tố cùng nhau

+) Với n = 6k + 4 (k )

Viết n = ( 6k + 1 ) + 3

Dễ có : 6k + 1 và ba nguyên tố cùng nhau

19 tháng 1 2017

xin loi minh ko biet

xin loi minh ko biet

xin loi minh ko biet

18 tháng 3 2017

ko bik 

ko bik

ko bik

xin loi

xin loi

xin loi

11 tháng 12 2016

Cai link nay se giup ich cho cau!

http://olm.vn/hoi-dap/question/94431.html

11 tháng 12 2016

bạn bị lào sao vậy Cửu vĩ linh hồ Kurama?Nó chẳng liên quan gì cả.

6 tháng 6 2015

n là số tự nhiên lớn hơn 6 nên n có thể có các dạng sau:

+)  Với n = 6k + 1 (k  N*) 

=> n = 3k + (3k + 1)

3k; 3k + 1 là 2 số tự nhiên liên tiếp => chúng nguyên tố cùng nhau 

+) Với n = 6k + 3 (k  N*) 

Viết n = (3k +1) + (3k +2) 

mà (3k +1); (3k+2) là 2 số tự nhiên liên tiếp => chúng nguyên tố cùng nhau

+) Tương tự với n = 6k + 5 (k  N*) 

Viết n = (3k+2) + (3k +3)

mà 3k + 2 và 3k + 3 nguyên tố cùng nhau

+) Với n = 6k + 2 (k  N*) 

Viết n = (6k -1) + 3

Gọi d = ƯCLN (6k - 1; 3)

=> 6k - 1 chia hết cho d;

    3 chia hết cho d => 3. 2k = 6k chia hết cho d

=> 6k - (6k -1) = 1 chia hết cho d => d = 1

do đó, 6k - 1 và 3 nguyên tố cùng nhau

+) Với n = 6k + 4 (k  N*) 

Viết n = (6k +1 ) + 3

Dễ có: 6k +1 và 3 nguyên tố cùng nhau

=> ĐPCM 

6 tháng 6 2015

n là số tự nhiên lớn hơn 6 nên n có thể có các dạng sau:

+)  Với n = 6k + 1 (k $\in$∈ N*) 

=> n = 3k + (3k + 1)

3k; 3k + 1 là 2 số tự nhiên liên tiếp => chúng nguyên tố cùng nhau 

+) Với n = 6k + 3 (k $\in$∈ N*) 

Viết n = (3k +1) + (3k +2) 

mà (3k +1); (3k+2) là 2 số tự nhiên liên tiếp => chúng nguyên tố cùng nhau

+) Tương tự với n = 6k + 5 (k $\in$∈ N*) 

Viết n = (3k+2) + (3k +3)

mà 3k + 2 và 3k + 3 nguyên tố cùng nhau

+) Với n = 6k + 2 (k $\in$∈ N*) 

Viết n = (6k -1) + 3

Gọi d = ƯCLN (6k - 1; 3)

=> 6k - 1 chia hết cho d;

    3 chia hết cho d => 3. 2k = 6k chia hết cho d

=> 6k - (6k -1) = 1 chia hết cho d => d = 1

do đó, 6k - 1 và 3 nguyên tố cùng nhau

+) Với n = 6k + 4 (k $\in$∈ N*) 

Viết n = (6k +1 ) + 3

Dễ có: 6k +1 và 3 nguyên tố cùng nhau

=> ĐPCM 

12 tháng 11 2016

cho bạn cái link : olm.vn/hỏi-đáp/question/94431.html .

bạn truy cập xong sẽ thấy đáp án

 

12 tháng 11 2016

olm.vn/hoi-dap/question/94431.html

27 tháng 5 2015

Thế nào có bạn nào hay thầy cô OLM làm được chưa ? Có cần công bố đáp án không ?

27 tháng 5 2015

n là số tự nhiên lớn hơn 6 nên n có thể có các dạng sau:

+)  Với n = 6k + 1 (k \(\in\) N*) 

=> n = 3k + (3k + 1)

3k; 3k + 1 là 2 số tự nhiên liên tiếp => chúng nguyên tố cùng nhau 

+) Với n = 6k + 3 (k \(\in\) N*) 

Viết n = (3k +1) + (3k +2) 

mà (3k +1); (3k+2) là 2 số tự nhiên liên tiếp => chúng nguyên tố cùng nhau

+) Tương tự với n = 6k + 5 (k \(\in\) N*) 

Viết n = (3k+2) + (3k +3)

mà 3k + 2 và 3k + 3 nguyên tố cùng nhau

+) Với n = 6k + 2 (k \(\in\) N*) 

Viết n = (6k -1) + 3

Gọi d = ƯCLN (6k - 1; 3)

=> 6k - 1 chia hết cho d;

    3 chia hết cho d => 3. 2k = 6k chia hết cho d

=> 6k - (6k -1) = 1 chia hết cho d => d = 1

do đó, 6k - 1 và 3 nguyên tố cùng nhau

+) Với n = 6k + 4 (k \(\in\) N*) 

Viết n = (6k +1 ) + 3

Dễ có: 6k +1 và 3 nguyên tố cùng nhau

=> ĐPCM 

Cho số tự nhiên n>5, ta sẽ chứng minh rằng n viết được dưới dạng tổng của 3 số nguyên tố. Xét:

  1. Trường hợp 1: Nếu n chẵn thì n=2+m với m chẵn, m>3. vì số chẵn >2 kế tiếp là 4 nên dù là m>3 thì m vẫn viết được dưới dạnng tổng 2 số nguyên tố.
  2. Trường hợp 2: nếu n lẻ thì n=3+m với m chẵn, m>2. Theo mệnh đề Euler, m chẵn, m>2 nên m viết được dưới dạng tổng hai số nguyên tố. Do đó n viết được dưới dạng tổng của 3 số nguyên tố
3 tháng 7 2016

Cho số tự nhiên n > 5 , ta sẽ chứng minh rằng n viết được dưới dạng tổng của 3 số nguyên tố . Xét 2 trường hợp :

a) Nếu n chẵn thì n = 2 + m với m chẵn , m > 3 .

b) Nếu n lẻ thì n = 3 + m với m chẵn , m > 2 .

Theo mệnh đề Ơ - le , m chẵn , m > 2 nên m viết được dưới dạng tổng hai số nguyên tố . Do đó n viết được dưới dạng tổng của 3 số nguyên tố .