Cho tam giác ABC cân (AB = AC), kẻ BD⊥ AC, CE ⊥ AB ( D ∈ AC, E∈ AB)
a) Chứng minh DB = CE . ABD ̂ = ACE ̂
b) Gọi K là giao điểm của BD và CE. Chứng minh tam giác BKC cân.
c) Chứng minh AK là phân giác của góc BAC và AK kéo dài đi qua trung điểm N
của BC.
d) Gọi M là một điểm bất kỳ thuộc cạnh BC, vẽ MI ⊥ AB, MH ⊥ AC ( I ∈ AB, H∈
AC). Chứng minh rằng : MI + MH không đổi.
Trả lời nhanh hộ mình ^_^