K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2020

Đặt biểu thức trên là A

Áp dụng bđt cosi:

\(x^5+\frac{1}{x}\ge2x^2\)

\(y^5+\frac{1}{y}\ge2y^2\)

\(z^5+\frac{1}{y}\ge2y^2\)

\(=>A\ge2.\left(x^2+y^2+z^2\right)\)

\(=>A\ge\frac{2.3.\left(a^2+b^2+c^2\right)}{3}\ge\frac{2.\left(a^2+b^2+c^2\right)}{3}=6\)(bđt bunhiacopxki)

Dấu "="xảy ra khi x = y = z = 1

Câu hỏi của hieu nguyen - Toán lớp 9 - Học toán với OnlineMath

21 tháng 2 2020

Chứng minh:



2/ Cho  nguyên dương. Chứng minh rằng:

21 tháng 2 2020

link mik nha

27 tháng 3 2020

Áp dụng bất đẳng thức AM-GM ta có:

\(x^5+\frac{1}{x}+1+1\ge4\sqrt[4]{x^5.\frac{1}{x}}=4x\)

Chứng minh tương tự: \(y^5+\frac{1}{y}+1+1\ge4\sqrt[4]{y^5.\frac{1}{y}}=4y\)

\(z^5+\frac{1}{z}+1+1\ge4\sqrt[4]{z^5.\frac{1}{z}}=4z\)

\(\Rightarrow T+6\ge4\left(x+y+z\right)=12\)

\(\Leftrightarrow T\ge6\)

Dấu " = " xảy ra <=> x=y=z=1

6 tháng 3 2020

Áp dụng BĐT Cô-si, ta có :

\(P=\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\ge3\sqrt[3]{\frac{1}{\sqrt{xyz}}}\)

Mặt khác, ta có : \(\sqrt[3]{xyz}\le\frac{x+y+z}{3}=1\)

\(\Rightarrow P\ge3\)

Vậy GTNN của P là 3 khi x = y = z = 1

1 tháng 9 2021

Cách đơn giản hơn cách của anh Tùng:) sửa nốt là thực dương :V

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(P=\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\ge\frac{\left(1+1+1\right)^2}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=\frac{9}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

Xét bđt phụ \(x+y+z\ge\sqrt{x}+\sqrt{y}+\sqrt{z}\)với x,y,z > 0 ( cấy ni thì dễ rồi nhân 2 vào cả 2 vế chuyển vế là xong )

\(\Rightarrow P\ge\frac{9}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\ge\frac{9}{x+y+z}=\frac{9}{3}=3\)

Dấu "=" xảy ra <=> x=y=z=1

12 tháng 12 2017

Đáp án C.

18 tháng 10 2020

Vì xyz=1\(\Rightarrow x^2\left(y+z\right)\ge2x^2\sqrt{yz}=2x\sqrt{x}\)

Tương tự \(y^2\left(z+x\right)\ge2y\sqrt{y};z^2=\left(x+y\right)\ge2z\sqrt{z}\)

\(\Rightarrow P\ge\frac{2x\sqrt{x}}{y\sqrt{y}+2z\sqrt{z}}+\frac{2y\sqrt{y}}{z\sqrt{z}+2x\sqrt{x}}+\frac{2z\sqrt{z}}{x\sqrt{x}+2y\sqrt{y}}\)

Đặt \(x\sqrt{x}+2y\sqrt{y}=a;y\sqrt{y}+2z\sqrt{z}=b;z\sqrt{z}+2x\sqrt{x}=c\)

\(\Rightarrow x\sqrt{x}=\frac{4c+a-2b}{9};y\sqrt{y}=\frac{4a+b-2c}{9};z\sqrt{z}=\frac{4b+c-2a}{9}\)

\(\Rightarrow P\ge\frac{2}{9}\left(\frac{4c+a-2b}{b}+\frac{4a+b-2c}{a}+\frac{4b+c-2a}{b}\right)\)

\(=\frac{2}{9}\text{ }\left[4\left(\frac{c}{b}+\frac{a}{c}+\frac{b}{a}\right)+\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)-6\right]\ge\frac{2}{9}\left(4.3+2-6\right)=2\)

Min P =2 khi và chỉ khi a=b=c khi va chỉ khi x=y=z=1

30 tháng 11 2018

Mạnh ê,tôi vào đc nixk này rồi hehe

30 tháng 11 2018

Duy thoát ra ngay đi

27 tháng 12 2017

x/x+1 = 1- 1/x+1

y/y+1 = 1- 1/y+1

z/z+1=1- 1/z+1

==) P = 3 - ( 1/x+1 + 1/y+1 + 1/x+1 )

Áp dụng Bất đẳng thức 1/a + 1/b + 1/c >= 9/a+b+c

==) P>=3 - 9/4 = 3/4

Dấu "=" xảy ra khi x,y,z \(\in\)R

                             x=y=z                   \(\)

                             x+y+z=1

==) x=y=z =1/3

Vậy MinP = 3/4 khi x=y=z=1/3