K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2020

\(S=1-3+3^2-3^3+...+3^{98}-3^{99}\)

\(=3^0-3^1+3^2-3^3+...+3^{98}-3^{99}\)có 100 hạng tử

\(=\left(3^0-3^1+3^2-3^3\right)+\left(3^4-3^5+3^6-3^7\right)+...+\left(3^{96}-3^{97}+3^{98}-3^{100}\right)\) có 25 cặp

\(=-20+3^4.\left(-20\right)+...+3^{96}.\left(-20\right)\)

\(=-20\left(1+3^4+...+3^{96}\right)⋮-20\)

25 tháng 1 2020

2+22+23+24+....+220

S=(2+22+23+24)+24x(2+22+23+24)+....+216x(2+22+23+24)

S=30+24x30+....+216x30

M=30x(1+24+.....+216)

mà 30 chia hết cho 5

=>30x(1+24+......+216​) chia hết cho 5

=>M chia hết cho 5 

   Đ/S : 30

25 tháng 1 2020

Bạn Đàm Quỳnh Chi làm tuy nhanh nhưng sai rồi nhé! Bạn tự biết nhé! Thanks

6 tháng 3 2020

Ta có 2n+1=2(n-3)+7

Để 2n+1 chia hết cho n-3 thì 2(n-3)+7 chia hết cho n-3

Vì 2(n-3) chia hết cho n-3

=> 7 chia hết cho n-3

n nguyên => n-3 nguyên => n-3 thuộc Ư (7)={-7;-1;1;7}
Nếu n-3=-7 => n=-4 

Nếu n-3=-1 => n=2

Nếu n-3=1 => n=4

Nếu n-3=7 => n=10

6 tháng 3 2020

Ta có : \(2n+1⋮n-3\)

\(=>2n-6+7⋮n-3\)

\(Do:2n-6⋮n-3\)

\(=>7⋮n-3\)

\(=>n-3\inƯ\left(7\right)\)

Nên ta có bảng sau : 

n-371-7-1
n104-42

Vậy ...

a=4 thì b=5

a=8 thì b=0

100% đó nếu cần giải ra thì kb nhé

5 tháng 3 2020

Để \(\overline{3a7b}⋮45\)thì \(\overline{3a7b}\)chia hết cho cả 5 và 9

\(\overline{3a7b}⋮5\Rightarrow b\in\left\{0;5\right\}\)

+) b=0, ta được \(\overline{3a70}⋮9\Rightarrow a=8\)

+) b=5, ta được \(\overline{3a75}⋮9\Rightarrow a=3\)

Vậy a=8 và b=0 hoặc a=3 và b=5.

10 tháng 6 2023

A = 17 \(\times\) (  \(\dfrac{1313}{5151}\) + \(\dfrac{1111}{3434}\)): \(\dfrac{177}{12}\)

A = 17 \(\times\) (\(\dfrac{1313:101}{5151:101}\) + \(\dfrac{1111:101}{3434:101}\)) : \(\dfrac{177}{12}\)

A = 17 \(\times\)\(\dfrac{13}{51}\) + \(\dfrac{11}{34}\)): \(\dfrac{177}{12}\)

A = 17 \(\times\) (\(\dfrac{13\times2}{51\times2}\)\(\dfrac{11\times3}{34\times3}\)) : \(\dfrac{177}{12}\)

A = 17 \(\times\)\(\dfrac{26}{102}\) + \(\dfrac{33}{102}\)): \(\dfrac{177}{12}\)

A = 17 \(\times\) \(\dfrac{59}{102}\)\(\dfrac{177}{12}\)

A = \(\)\(\dfrac{59}{6}\) \(\times\) \(\dfrac{12}{177}\)

A =  \(\dfrac{2}{3}\)

12 tháng 10 2017

\(S=5+5^2+5^3+.......+5^{2010}\)

Vì 2010 : 6 = 335 (nhóm ) nên mỗi nhóm ta ghép 6 số hạng liên tiếp được

\(\Leftrightarrow S=\left(5+5^2+5^3+5^4+5^5+5^6\right)+...+\left(5^{2005}+5^{2006}+5^{2007}+5^{2008}+5^{2009}+5^{2010}\right)\)

\(\Leftrightarrow S=5.\left(1+5+5^2+5^3+5^4+5^5\right)+....+5^{2005}.\left(1+5+5^2+5^3+5^4+5^5\right)\)

\(\Leftrightarrow S=5.3906+....+5^{2005}.3906\)

\(\Leftrightarrow S=5.126.31+...+5^{2005}.126.31\)

\(\Leftrightarrow126.\left(5.31+....+5^{2005}.31\right)⋮126\)

Vậy S chia hết cho 126

Nhớ k cho mình nhé! Thank you!!!

12 tháng 10 2017

Cảm ơn bạn My Nguyễn Thị Trà nha ! Mình k cho bạn rồi đó

15 tháng 10 2017

S = 5 + 52+53+...+52010

   = (5+54)+(52+55)+(53+56)+(57+510)+...+(52007+52010)

   =5.(1+53)+52.(1+53)+53.(1+53)+57.(1.53)+...+52007.(1+53)

   = 5.126 + 52.126 + 53.126 + 57.126 + ...+ 52007.126

   = 126.(5+52+53+57+...+52007)

Vì \(126⋮126\)

Nên \(126.\left(5+5^2+5^3+5^7+...+5^{2007}\right)⋮126\)

\(\Rightarrow S⋮126\)

12 tháng 10 2017

Mk biết làm nhưng ko biết có đúng cách làm ko

mk học lớp 6

ta có:

11...1 chia hết cho 81= 11...1 chia hết cho 9*9

- tổng các chữ số là: 1+1+1+1+1+1...+1= 81 chia hết cho 9 =9 chia hết cho 9

nên 111...1 chia hết cho 81.

5 tháng 9 2021

bạn vào link này 

nhưng vẫn tiick cho mình nha

https://pitago.vn/question/chung-minh-rang-a-so-gom-81-chu-so-1-chia-het-cho-81-b-4105.html

ok t ick nhá

4 tháng 8 2018

ta có :số chia hết cho cả 2 và 3 là số chia hết cho 6

các số chia hết cho 6 trong khoảng từ 50 đến 200 là :

A={54;60;66;...;192;198}

A có :(198-54):6+1=25(số hạng)

vậy có 25 số chia hết cho cả 2 và 3 trong khoảng từ 50 đến 200