Cho tam giác ABC cân tại A (góc A < 45 độ), lấy điểm M thuộc BC, từ M kẻ MH // AB. Điểm H thuộc AC. Kẻ MI // AC (I thuộc AB).
Chứng minh:
a) Tam giác AIH = Tam giác MHI
b) AI = HC
c) Lấy N sao cho HI là trung trực của MN. CMR: IN = IB
d) Gọi giao điểm NH và AB là D. CMR: Chu vi tam giác ADH không phụ thuộc vào vị trí điểm M trên BC.
AC giải chính xác giúp e ạ
rễ vậy lun
Giải thích các bước giải:
a.Ta có : MI//AC,MH//AB→ˆAHI=ˆMIH,ˆAIH=ˆIHMMI//AC,MH//AB→AHI^=MIH^,AIH^=IHM^
→ΔAIH=ΔMHI(g.c.g)→ΔAIH=ΔMHI(g.c.g)
b.Từ câu a →AI=MH→AI=MH
Mà HM//AB,ΔABCHM//AB,ΔABC cân tại A →ˆHMC=ˆABC=ˆACB→ΔHMC→HMC^=ABC^=ACB^→ΔHMC cân tại H
→HM=HC→AI=HC→HM=HC→AI=HC
c.Ta có : ΔABCΔABC cân tại A, MI//AC→ˆIBM=ˆACB=ˆIMBMI//AC→IBM^=ACB^=IMB^
→IB=IM→IB=IM
Do HI là trung trực của MN →IM=IN→IB=IN→IM=IN→IB=IN
d.Ta có :
IHIH là trung trưc của MN
→ˆIHD=180o−ˆIHN=180o−ˆIHM=ˆAHI+ˆMHC=ˆAHI+ˆIAH=ˆDIH→IHD^=180o−IHN^=180o−IHM^=AHI^+MHC^=AHI^+IAH^=DIH^
→DI=DH→DI=DH
→PADH=AD+DH+HA=AI+ID+DI+HA=2DI+HC+AH=2DI+AC→PADH=AD+DH+HA=AI+ID+DI+HA=2DI+HC+AH=2DI+AC
→PADH→PADH thay đổi