K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2021

\(\left|\overrightarrow{AB}+\overrightarrow{AD}\right|=a\sqrt{5}\)

\(\left|\overrightarrow{BC}-\overrightarrow{OD}\right|=\left|\overrightarrow{AD}+\overrightarrow{DO}\right|=AO=\dfrac{a\sqrt{5}}{2}\)

AH
Akai Haruma
Giáo viên
4 tháng 9 2021

Lời giải:
1.

$\overrightarrow{2AO}-\overrightarrow{BC}=\overrightarrow{AC}-\overrightarrow{BC}=\overrightarrow{AB}$

Độ dài: $|\overrightarrow{AB}|=a$

2.

Trên tia đối của $AC$ lấy $T$ sao cho $TA=OC$

Trên tia đối của $BA$ lấy $K$ sao cho $BA=BK$

$\overrightarrow{OC}+2\overrightarrow{AB}=\overrightarrow{TA}+\overrightarrow{AB}+\overrightarrow{AB}$

$=\overrightarrow{TB}+\overrightarrow{AB}$

$=\overrightarrow{TB}+\overrightarrow{BK}=\overrightarrow{TK}$

Ta có:

$TC=3OC=\frac{3}{2}AC=\frac{3}{2}\sqrt{(2a)^2+a^2}=\frac{3\sqrt{5}}{2}a$

$CK=\sqrt{BC^2+BK^2}=\sqrt{(2a)^2+a^2}=\sqrt{5}a$

$\cos \widehat{TCK}=\cos 2\widehat{TCB}=2\cos^2 \widehat{TCB}-1$

$=2(\frac{CB}{AC})^2-1=\frac{3}{5}$

Áp dụng định lý cos:

$TK^2=TC^2+CK^2-2TC.CK\cos \widehat{TCK}$

$=\frac{45}{4}a^2+5a^2-9a^2=\frac{29}{4}a^2$

$\Rightarrow TK=\frac{\sqrt{29}}{2}a$

3. Trên tia đối tia $CD$ lấy $M$ sao cho $CM=CD$

$3\overrightarrow{AB}+2\overrightarrow{OD}=3\overrightarrow{DC}+2\overrightarrow{OD}=2\overrightarrow{OC}+\overrightarrow{DC}$

$=\overrightarrow{AC}+\overrightarrow{DC}=\overrightarrow{AC}+\overrightarrow{CM}=\overrightarrow{AM}$

$AM=\sqrt{AD^2+DM^2}=\sqrt{(2a)^2+(2a)^2}=2\sqrt{2}a$

AH
Akai Haruma
Giáo viên
4 tháng 9 2021

Hình vẽ:

4 tháng 3 2017

Đáp án A.

 

19 tháng 1 2018

Đáp án là A

5 tháng 12 2021
Hình vẽ đâu bạn?;
5 tháng 10 2019

Đáp án A

15 tháng 11 2018

Đáp án C

Gọi O là trung điểm của SD. Ta có:

A D = D M = a 2  và A D = 2 a ⇒ A M ⊥ D M  

Lại có D M ⊥ S A ⇒ D M ⊥ S A M ⇒ D M ⊥ S M  

Vì tam giác SAD vuông tại A nên OS = OD = OA. Tương tự với tam giác SMD nên OS = OD = OM.

Vậy O là tâm mặt cầu ngoại tiếp hình chóp S.ADM. Khi đó R = S D 2 = S A 2 + D A 2 2 = a 6 2 .

29 tháng 7 2019

Đáp án C