K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2018

Ngủ đi , bây giờ chẳng bạn nào giải đâu !!! 
Chúc học giỏi !!! 

1 tháng 3 2018

AB=R\(\sqrt{3}\)

23 tháng 6 2019

A B C I K D O S x

a) Ta có đuờng tròn (I) tiếp xúc với AC tại A, theo tính chất góc tạo bởi tiếp tuyến và dây thì ^DAC = ^DBA

Tuơng tự ^DAB = ^DCA. Do đó ^BDC = ^DAB + ^DAC + ^DBA + ^DCA = 2(^DAB + ^DAC) = 2.^BAC = ^BOC

Suy ra 4 điểm B,D,O,C cùng thuộc một đuờng tròn theo quỹ tích cung chứa góc (đpcm).

b) Gọi đuờng thẳng AD cắt đường tròn đi qua 4 điểm B,O,D,C tại S khác D. Ta sẽ chỉ ra S cố định.

Thật vậy, gọi Dx là tia đối của tia DB. Ta có ^ODC = ^OBC = ^OCB = ^ODx => DO là phân giác ^CDx

Ta thấy hai đuờng tròn (O) và (I) cắt nhau tại A và B nên OI vuông góc AB

Mà AK vuông góc với AB (vì (K) tiếp xúc AB tại A) nên OI // AK. Tuơng tự OK // AI

Từ đây tứ giác AIOK là hình bình hành => IK chia đôi OA. Cũng dễ thấy IK là trung trực của AD

Theo đó IK chứa đuờng trung bình của \(\Delta\)AOD => IK // OD. Mà IK vuông góc AD nên OD vuông góc AD

Kết hợp với OD là phân giác của ^CDx => AD là phân giác của ^BDC (do ^CDx và ^BDC bù nhau)

Hay DS là phân giác của ^BDC. Lại có ^BDC là góc nội tiếp đuờng tròn đi qua B,D,O,C

=> S là điểm chính giữa (BC không chứa O của đuờng tròn (BOC)

Vì B,O,C cố định nên điểm chính giữa (BC không chứa O của (BOC) cố định => S cố định

Vậy AD luôn đi qua S cố định (đpcm).

12 tháng 7 2021

a) Tiếp tuyến tại A và B của (O) cắt nhau tại C.CM cắt (I) tại N'

Xét \(\Delta CAM\) và \(\Delta CN'A:\) Ta có: \(\left\{{}\begin{matrix}\angle ACN'chung\\\angle CAM=\angle CN'A\end{matrix}\right.\)

\(\Rightarrow\Delta CAM\sim\Delta CN'A\left(g-g\right)\Rightarrow\dfrac{CA}{CN'}=\dfrac{CM}{CA}\Rightarrow CA^2=CM.CN'\)

mà \(CA^2=CB^2\Rightarrow CB^2=CM.CN'\Rightarrow\dfrac{CB}{CM}=\dfrac{CN'}{CB}\)

Xét \(\Delta CBM\) và \(\Delta CN'B:\) Ta có: \(\left\{{}\begin{matrix}\angle BCN'chung\\\dfrac{CB}{CM}=\dfrac{CN'}{CB}\end{matrix}\right.\)

\(\Rightarrow\Delta CBM\sim\Delta CN'B\left(c-g-c\right)\Rightarrow\angle CBB=\angle CN'B\Rightarrow N'\in\left(J\right)\)

\(\Rightarrow N\equiv N'\Rightarrow MN\) luôn đi qua điểm C mà A,B cố định

\(\Rightarrow C\) cố định \(\Rightarrow\) đpcm

b) mình chỉ chứng minh được N thuộc 1 đường tròn cố định thôi,còn chạy trên đoạn thẳng hình như là ko được

Ta có: \(\angle ANB=\angle ANM+\angle BNM=\dfrac{1}{2}\angle AIM+\dfrac{1}{2}\angle BJM\)

Xét \(\Delta AIM\) và \(\Delta AOB:\) Ta có: \(\left\{{}\begin{matrix}\angle OABchung\\\dfrac{IA}{OA}=\dfrac{IM}{OB}\end{matrix}\right.\)

\(\Rightarrow\Delta AIM\sim\Delta AOB\left(c-g-c\right)\Rightarrow\angle AIM=\angle AOB\)

Tương tự \(\Rightarrow\angle BJM=\angle AOB\)

\(\Rightarrow\angle ANB=\dfrac{1}{2}\angle AOB+\dfrac{1}{2}\angle AOB=\angle AOB\)

\(\Rightarrow N\in\left(AOB\right)\) mà A,O,B cố định \(\Rightarrow N\in\left(AOB\right)\) cố địnhundefined

12 tháng 7 2021

Mình cảm ơn bạn nha

1: góc OMP=góc ONP=90 độ

=>OMNP nội tiếp

2: Xet ΔCOM vuông tại O và ΔCND vuôngtại N có

góc OCM chung

=>ΔCOM đồng dạngvới ΔCND

=>CO/CN=CM/CD

=>CM*CN=CO*CD=2R^2