K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 2 2020

Bạn tham khảo:

https://hoc24.vn/hoi-dap/question/916292.html

NV
19 tháng 2 2020

\(\left\{{}\begin{matrix}x+y=2k-1\\\left(x+y\right)^2-2xy=2k^2+4k-11\end{matrix}\right.\)

\(\Rightarrow2xy=\left(2k-1\right)^2-\left(2k^2+4k-11\right)=2k^2-8k+12\)

\(\Rightarrow xy=k^2-4k+6=\left(k-2\right)^2+2\ge2\)

Dấu "=" xảy ra khi \(k=2\)

20 tháng 1 2021

giúp mik đc ko, mikk cần gấp

hihi

Ta có: \(\left\{{}\begin{matrix}\left(m-1\right)x-y=2\\mx+y=m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m-1\right)x+mx=2+m\\mx+y=m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\left(2m-1\right)=m+2\\mx+y=m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m+2}{2m-1}\\y=m-mx=m-m\cdot\dfrac{m+2}{2m-1}=m-\dfrac{m^2+2m}{2m-1}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m+2}{2m-1}\\y=\dfrac{2m^2-m-m^2-2m}{2m-1}=\dfrac{m^2-3m}{2m-1}\end{matrix}\right.\)

Để x+y>0 thì \(\dfrac{m+2}{2m-1}+\dfrac{m^2-3m}{2m-1}>0\)

\(\Leftrightarrow\dfrac{m+2+m^2-3m}{2m-1}>0\)

\(\Leftrightarrow\dfrac{m^2-2m+2}{2m-1}>0\)

mà \(m^2-2m+2>0\forall m\)

nên 2m-1>0

\(\Leftrightarrow2m>1\)

hay \(m>\dfrac{1}{2}\)

Vậy: Để hệ phương trình có nghiệm duy nhất thỏa mãn x+y>0 thì \(m>\dfrac{1}{2}\)

17 tháng 2 2021

\(\left\{{}\begin{matrix}mx+y=3\left(1\right)\\4x+my=6\left(2\right)\end{matrix}\right.\) 

TH1: m=0 có nghiệm:\(\left\{{}\begin{matrix}x=\dfrac{6}{4}\\y=3\end{matrix}\right.\) ( Thỏa mãn điều kiện đề bài ) => nhận m=0

TH2: m khác 0 \(\dfrac{m}{4}\ne\dfrac{1}{m}\Leftrightarrow m\ne\pm2\) 

\(\left\{{}\begin{matrix}\left(1\right)\Rightarrow y=3-mx\\\left(2\right)\Rightarrow x=\dfrac{6-my}{4}=\dfrac{6-m\left(3-mx\right)}{4}\end{matrix}\right.\) 

\(\Rightarrow\left(m^2-4\right)x=3m-6\) \(\Rightarrow x=\dfrac{3}{m+2}\) đối chiếu điều kiện: (x>1)

\(\Rightarrow\dfrac{3}{m+2}-1>0\) \(\Leftrightarrow\dfrac{1-m}{m+2}>0\)

TH1: \(\left\{{}\begin{matrix}1-m< 0\\m+2< 0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>1\\m< -2\end{matrix}\right.\) ( Loại )

TH2: \(\left\{{}\begin{matrix}1-m>0\\m+2>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m< 1\\m>-2\end{matrix}\right.\) ( Nhận ) \(\Rightarrow m\in\left(-2;1\right)\) 

Đối chiếu điều kiện: y>0 \(\Leftrightarrow3-m\left(\dfrac{3}{m+2}\right)>0\) 

\(\Leftrightarrow\dfrac{2}{m+2}>0\) \(\Leftrightarrow m>-2\) 

Gộp cả 2 điều kiện x và y ta được m=-1 và m=0 

Nãy giờ gõ nó cứ bị lỗi :D 

11 tháng 1 2022

\(\left\{{}\begin{matrix}3x-y=2m-1\\x+2y=3m+2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}6x-2y=4m-2\\x+2y=3m+2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}6x-2y+x+2y=4m-2+3m+2\\x+2y=3m+2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}7x=7m\\x+2y=3m+2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=m\\m+2y=3m+2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=m\\2y=2m+2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=m\\y=m+1\end{matrix}\right.\)

\(x^2+y^2+3\\ =m^2+\left(m+1\right)^2+3\\ =m^2+m^2+2m+1+3\\ =2m^2+2m+4\\ =2\left(m^2+m+2\right)\)

\(=2\left(m^2+m+\dfrac{1}{4}+\dfrac{7}{4}\right)\)

\(=2\left[\left(m+\dfrac{1}{2}\right)^2+\dfrac{7}{4}\right]\)

\(=2\left(m+\dfrac{1}{2}\right)^2+\dfrac{7}{2}\ge\dfrac{7}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow m=-\dfrac{1}{2}\)

Vậy ...