Tính tổng: S= (-1/7)\(^0\)+(-1/7)\(^1\)+(-1/7)\(^2\)+......+(-1/7)\(^{2007}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S=(-1/7)0+(-1/7)1+...+(-1/7)2007
-1/7.S=(-1/7)1+(-1/7)2+...+(-1/7)2008
-1/7.S-S=[(-1/7)1+(-1/7)2+...+(-1/7)2008]-[(-1/7)0+(-1/7)1+...+(-1/7)2007]
-8/7.S=(-1/7)2008-(-1/7)0
-8/7.S=(1/7)2008-1
.........................
a) \(S=\left(-\frac{1}{7}\right)^0+\left(-\frac{1}{7}\right)^1+\left(-\frac{1}{7}\right)^2+...+\left(-\frac{1}{7}\right)^{2007}\)
\(=1+\left(-\frac{1}{7}\right)+\left(-\frac{1}{7}\right)^2+...+\left(-\frac{1}{7}\right)^{2007}\)
=> 7S = \(7+\left(-1\right)+\left(-\frac{1}{7}\right)+...+\left(-\frac{1}{7}\right)^{2006}\)
Lấy 7S trừ S ta có :
7S - S = \(7+\left(-1\right)+\left(-\frac{1}{7}\right)+...+\left(-\frac{1}{7}\right)^{2006}-\left[1+\left(-\frac{1}{7}\right)+\left(-\frac{1}{7}\right)^2+...+\left(-\frac{1}{7}\right)^{2007}\right]\)
6S = \(7-1-1+\left(\frac{1}{7}\right)^{2007}=5+\left(\frac{1}{7}\right)^{2007}\Rightarrow S=\frac{5+\left(\frac{1}{7}\right)^{2007}}{6}\)
Tổng quát:với a khác 1
tính tổng:
S=a^0+a^1+a^2+....+a^2007 (1)
<=>a.S=a^1+a^2+a^3+....+a^2007+a^2008 (2)
lấy (2) trừ (1) ta được:
a.S-S=a^2008-a^0=a^2008-1
<=>S=(a^2008-1)/(a-1)
với a=-1/7 ta có:
S= (-1/7)^0 + (-1/7)^1+(-1/7)^2 +...+ (-1/7)^2007
=[(-1/7)^2008 -1]/(-1/7 -1)
mk trả lời đầu tiên nhớ k cho mk đó nha!
S= \(\left(-\dfrac{1}{7}\right)^0+\left(-\dfrac{1}{7}\right)^1+\left(-\dfrac{1}{7}\right)^2+...+\left(-\dfrac{1}{7}\right)^{2017}\)
\(\left(-\dfrac{1}{7}\right)S=\left(-\dfrac{1}{7}\right)\left(-\dfrac{1}{7}+-\dfrac{1^2}{7}+..+-\dfrac{1^{2007}}{7}\right)\)
= \(-\dfrac{1}{7}+-\dfrac{1}{7}^2+....+\dfrac{-1^{2008}}{7}\)
=>\(-\dfrac{1}{7}S-S=\) \(-\dfrac{1}{7}+-\dfrac{1}{7}^2+....+\dfrac{-1^{2008}}{7}\) \(-\)\(\left(1+-\dfrac{1}{7}+-\dfrac{1^2}{7}+...+-\dfrac{1^{2007}}{7}\right)\)
=> \(-\dfrac{1}{7}S=\) \(\dfrac{-1^{2008}}{7}-1\)
=> S= \(\dfrac{-1^{2008}}{7}-1\) : \(\dfrac{-1}{7}\)
S=1+(-1/7)^1+(-1/7)^2+...+(-1/7)^2007
=>7S=7+(-1/7)^1+(1/7)^2+...+(-1/7)^2006
=>(7-1)S=6-(1/7)^2007
=>S=1-(-1/7^2007/6)
1/7S=(-1/7)^1+...+(-1/7)2018
1/7S-S=(-1/7)^1+....+(-1/7)^2018-(-1/7)^0-...-(-1/7)^2017
-6/7S=(-1/7)^2018-1=(-1/7)^2018-1:-6/7
S=(−1/7)^0+(−1/7)^1+(−1/7)^2+...+(−1/7)^2007
7S = 1+(−1/7)^1+(−1/7)^2+...+(−1/7)^2007
=> 7S = 7+(−1/7)^1+(−1/7)^2+...+(−1/7)^2006
=> 6S = 6-(−1/7)^2007
=> S= 1-(−1/7^2007/6)
S=(−1/7)^0+(−1/7)^1+(−1/7)^2+...+(−1/7)^2007
7S = 1+(−1/7)^1+(−1/7)^2+...+(−1/7)^2007
=> 7S = 7+(−1/7)^1+(−1/7)^2+...+(−1/7)^2006
=> 6S = 6-(−1/7)^2007
=> S= 1-(−1/7^2007/6)
\(S=\left(-\frac{1}{7}\right)^0+\left(-\frac{1}{7}\right)^1+\left(-\frac{1}{7}\right)^2+...+\left(-\frac{1}{7}\right)^{2007}\\ \Rightarrow7S=7+\left(-1\right)+\left(-\frac{1}{7}\right)^2+...+\left(-\frac{1}{7}\right)^{2006}\\ \Rightarrow7S-S=\left[7+\left(-1\right)+\left(-\frac{1}{7}\right)^2+...+\left(-\frac{1}{7}\right)^{2006}\right]-\left[1+\left(-\frac{1}{7}\right)+\left(-\frac{1}{7}\right)^2+...+\left(-\frac{1}{7}\right)^{2007}\right]\\ =7-\left(-\frac{1}{7}\right)-\left(-\frac{1}{7}\right)^{2007}\\ =\frac{50}{7}-\left(-\frac{1}{7}\right)^{2007}\\ \Rightarrow S=\frac{\frac{50}{7}-\left(-\frac{1}{7}\right)^{2007}}{6}\)