K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2020

b,\(A=\frac{4}{3x-6}-\frac{x}{x^2-4}\)

\(A=\frac{4}{3\left(x-2\right)}-\frac{x}{\left(x-2\right)\left(x+2\right)}\)

\(A=\frac{4x+8}{3\left(x-2\right)\left(x+2\right)}-\frac{3x}{3\left(x-2\right)\left(x+2\right)}\)

\(A=\frac{x-8}{3\left(x-2\right)\left(x+2\right)}\)

c, Thay x = 1 vào A ta đc

\(\frac{1-8}{3\left(1-2\right)\left(1+2\right)}=\frac{7}{9}\)

19 tháng 2 2020

a) A xác định \(\Leftrightarrow\hept{\begin{cases}3x-6\ne0\\x^2-4\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}3x\ne6\\x^2\ne4\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ne2\\x\ne\pm2\end{cases}\Leftrightarrow}x\ne\pm2}\)

Vậy A xác định khi \(x\ne\pm2\)

b) \(A=\frac{4}{3x-6}-\frac{x}{x^2-4}\left(x\ne\pm2\right)\)

\(\Leftrightarrow A=\frac{4}{3\left(x-2\right)}-\frac{x}{\left(x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow A=\frac{4\left(x+2\right)}{3\left(x-2\right)\left(x+2\right)}-\frac{3x}{3\left(x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow A=\frac{4x+8}{3\left(x+2\right)\left(x-2\right)}-\frac{3x}{3\left(x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow A=\frac{4x+8-3x}{3\left(x-2\right)\left(x+2\right)}=\frac{x+8}{3\left(x-2\right)\left(x+2\right)}\)

Vậy \(A=\frac{x+8}{3\left(x-2\right)\left(x+2\right)}\left(x\ne\pm2\right)\)

c) Thay x=1 (tmđk) vào A ta có: \(A=\frac{1+8}{3\left(1-2\right)\left(1+2\right)}=\frac{9}{-9}=-1\)

Vậy \(A=-1\)khi x=1

8 tháng 1 2021

a) A đc xác định <=>2x+4\(\left\{{}\begin{matrix}2x+4\ne0\\x^2-4\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne-2\\x\ne2\end{matrix}\right.\)

 

8 tháng 1 2021

câu b bn quy đòng mẫu là đc

 

2 tháng 1 2023

a) Biểu thức A xác định `<=>x^2-1 ne 0 <=> (x-1)(x+1) ne 0 <=> x ne +-1`

b) `A=(x^2-3x-4)/(x^2 -1) = (x^2+x-4x-4)/(x^2-1) = (x(x+1)-4(x+1))/(x^2-1)`

`= ((x+1)(x-4))/((x+1)(x-1))=(x-4)/(x-1)`

c) `A` là số nguyên `<=> (x-4) vdots\ (x-1)`

`<=>[(x-1)-3] vdots\ (x-1)`

`<=> -3\ vdots\ (x-1)`

`<=> (x-1)\ in\ Ư(-3)`

`<=>(x-1)\ in\ {-3;-1;3;1}`

`<=>x\ in\ {-2;0;4;2}`

Vậy...

 

a: ĐKXĐ: x<>1; x<>-1

b: \(A=\dfrac{\left(x-4\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{x-4}{x-1}\)

c: Để A là số nguyên thì x-1-3 chia hết cho x-1

=>\(x-1\in\left\{1;-1;3;-3\right\}\)

=>\(x\in\left\{2;0;4;-2\right\}\)

8 tháng 8 2017

sau khi rút gọn ta được \(P=\frac{x-4}{x-2}\left(x\ne-3;x\ne2;x\ne-2\right)\)

d,ta có \(P=\frac{x-4}{x-2}=\frac{x-2-2}{x-2}=1-\frac{2}{x-2}\left(x\ne-2;x\ne-3;x\ne2\right)\)

để P nguyên mà x nguyên \(\Leftrightarrow x-2\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)

ta có bảng:

x-21-12-2
x3(tm)1(tm)4(tm)0(tm)

vậy \(P\in Z\Leftrightarrow x\in\left\{3;1;4;0\right\}\)

e,x2-9=0

\(\Leftrightarrow x^2=9\Leftrightarrow\orbr{\begin{cases}x=3\left(tm\right)\\x=-3\left(kotm\right)\end{cases}}\)

thay x=3 vào P đã rút gọn ta có \(P=\frac{3-4}{3-2}=-1\)

vậy với x=3 thì p có giá trị bằng -1

tích mình đi

làm ơn

rùi mình

tích lại

thanks

14 tháng 12 2022

`A=(x/[x^2-4]+2/[2-x]+1/[2+x]).[x+2]/2`

`a)ĐK: x \ne +-2`

`b)` Với `x \ne +-2` có:

`A=[x-2(x+2)+x-2]/[(x-2)(x+2)].[x+2]/2`

`A=[x-2x-4+x-2]/[x-2]. 1/2`

`A=[-3]/[x-2]`

`c)x=-1` t/m đk `=>` Thay `x=-1` vào `A` có: `A=[-3]/[-1-2]=1`

a: ĐKXĐ: \(x\notin\left\{0;1;-1\right\}\)

31 tháng 12 2018

M xác định

\(\Leftrightarrow\hept{\begin{cases}x-1\ne0\\x^2-x\ne0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ne1\\x\left(x-1\right)\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne0;x\ne1\end{cases}}\Leftrightarrow}\hept{\begin{cases}x\ne1\\x\ne0\end{cases}}\)

Vậy ĐKXĐ của M là \(\hept{\begin{cases}x\ne1\\x\ne0\end{cases}}\)

\(M=\frac{3}{x-1}+\frac{1}{x^2-x}=\frac{3}{x-1}+\frac{1}{x\left(x-1\right)}=\frac{3x}{x\left(x-1\right)}+\frac{1}{x\left(x-1\right)}=\frac{3x+1}{x\left(x-1\right)}\)

Thay x=5 ta có: 

\(M=\frac{3.5+1}{5\left(5-1\right)}=\frac{15+1}{5.4}=\frac{16}{20}=\frac{4}{5}\)

Vậy \(M=5\)tại  x=5

31 tháng 12 2018

\(M=0\)

\(\Leftrightarrow\frac{3x+1}{x\left(x-1\right)}=0\Leftrightarrow3x+1=0\Leftrightarrow x=-\frac{1}{3}\)( thỏa mãn đkxđ)

Vậy với \(x=-\frac{1}{3}\)thì \(M=0\)

\(M=-1\)

\(\Leftrightarrow\frac{3x+1}{x\left(x-1\right)}=-1\Leftrightarrow3x+1=-x^2+x\Leftrightarrow x^2+2x+1=0\Leftrightarrow\left(x+1\right)^2=0\Leftrightarrow x=-1\)

Vậy với \(x=-1\)thì \(M=-1\)

Bài 1 : Cho biểu thức A = \(\frac{x}{x+2}\) + \(\frac{4-2x}{x^2-4}\)a ) Tìm điều kiện của x để biểu thức A có nghĩa b ) Rút gọn biểu thứ A c ) Tìm giá trị của x khi A = 0Bài 2 : cho biểu thức B = \(\frac{x}{x+3}\)+ \(\frac{9-3x}{x^2-9}\) a ) Tìm điều kiện của x để biểu thức B có nghĩa b ) Rút gọn biểu thứ B c ) Tìm giá trị của x khi B = 0Bài 3 : Cho phân thức : A =\(\frac{x^2+2x+1}{x^2-x-2}\)a ) Tìm x để biểu thức...
Đọc tiếp

Bài 1 : Cho biểu thức A = \(\frac{x}{x+2}\) + \(\frac{4-2x}{x^2-4}\)

a ) Tìm điều kiện của x để biểu thức A có nghĩa 

b ) Rút gọn biểu thứ A 

c ) Tìm giá trị của x khi A = 0

Bài 2 : cho biểu thức B = \(\frac{x}{x+3}\)\(\frac{9-3x}{x^2-9}\)

 

a ) Tìm điều kiện của x để biểu thức B có nghĩa 

b ) Rút gọn biểu thứ B 

c ) Tìm giá trị của x khi B = 0

Bài 3 : Cho phân thức : A =\(\frac{x^2+2x+1}{x^2-x-2}\)

a ) Tìm x để biểu thức A xác định 

b ) Rút gọn biểu thức A 

c ) Tính giá trị của biểu thức A khi x = 0 , 1 , 2012

d ) Tìm các giá trị nguyên của x để A nhận giá trị nguyên 

Bài 4 : Cho biểu thức : A =\(\frac{1}{x+1}\)\(\frac{1}{x-1}\)\(\frac{2}{x^2-1}\)

a ) tìm điều kiện của x để biểu thức A có nghĩa 

b ) Rút gọn biểu thức A 

C ) Tìm giá trị nguyên của x để biểu thức A nhận giá trị nguyên 

CÁC BẠN GIẢI ĐƯỢC BÀI NÀO THÌ GIẢI GIÚP MÌNH VỚI NHÉ KHÔNG NHẤT THIẾT PHẢI GIẢI HẾT ĐÂU ! BÂY GIỜ MÌNH ĐANG RẤT CẦN CÁC BẠN CỐ GẮNG NHÉ !

5
1 tháng 1 2017

Dài quá trôi hết đề khỏi màn hình: nhìn thấy câu nào giải cấu ấy

Bài 4:

\(A=\frac{\left(x-1\right)+\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}-\frac{2}{\left(x+1\right)\left(x-1\right)}=\frac{2\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\)

a) DK x khác +-1

b) \(dk\left(a\right)\Rightarrow A=\frac{2}{\left(x+1\right)}\)

c) x+1  phải thuộc Ước của 2=> x=(-3,-2,0))

1 tháng 1 2017

1. a) Biểu thức a có nghĩa \(\Leftrightarrow\hept{\begin{cases}x+2\ne0\\x^2-4\ne0\end{cases}}\)

                                      \(\Leftrightarrow\hept{\begin{cases}x+2\ne0\\x-2\ne0\\x+2\ne0\end{cases}}\)

                                       \(\Leftrightarrow\hept{\begin{cases}x\ne-2\\x\ne2\end{cases}}\)

   Vậy vs \(x\ne2,x\ne-2\) thì bt a có nghĩa

b)  \(A=\frac{x}{x+2}+\frac{4-2x}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{4-2x}{\left(x+2\right)\left(x-2\right)}\)

\(=\frac{x^2-2x+4-2x}{\left(x+2\right)\left(x-2\right)}\)

\(=\frac{x^2-4x+4}{\left(x+2\right)\left(x-2\right)}\)

\(=\frac{\left(x-2\right)^2}{\left(x+2\right)\left(x-2\right)}\)

 \(=\frac{x-2}{x+2}\)       

c) \(A=0\Leftrightarrow\frac{x-2}{x+2}=0\)             

\(\Leftrightarrow x-2=\left(x+2\right).0\)          

\(\Leftrightarrow x-2=0\)   

\(\Leftrightarrow x=2\)(ko thỏa mãn điều kiện )

=> ko có gía trị nào của x để A=0