cho tam giác ABC cân tại A. Các đường thẳng vuông góc với AB, AC lần lượt tại B,C cắt nhau ở M. CMR:
a) AM là tia phân giác của góc A
b) AM vuông góc với BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\widehat{ABC}+\widehat{MBC}=\widehat{ABM}\)(tia BC nằm giữa hai tia BA,BM)
nên \(\widehat{ABC}+\widehat{MBC}=90^0\)(1)
Ta có: \(\widehat{ACB}+\widehat{MCB}=\widehat{ACM}\)(tia CB nằm giữa hai tia CA,CM)
nên \(\widehat{ACB}+\widehat{MCB}=90^0\)(2)
Ta có: ΔABC cân tại A(gt)
nên \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC cân tại A)(3)
Từ (1), (2) và (3) suy ra \(\widehat{MBC}=\widehat{MCB}\)
Xét ΔMBC có \(\widehat{MBC}=\widehat{MCB}\)(cmt)
nên ΔMBC cân tại M(Định lí đảo của tam giác cân)
b) Xét ΔABM vuông tại B và ΔACM vuông tại C có
AB=AC(ΔABC cân tại A)
BM=CM(ΔMBC cân tại M)
Do đó: ΔABM=ΔACM(hai cạnh góc vuông)
⇒\(\widehat{BAM}=\widehat{CAM}\)(hai góc tương ứng)
mà tia AM nằm giữa hai tia AB,AC
nên AM là tia phân giác của \(\widehat{BAC}\)(đpcm)
Ta có: ΔABM=ΔACM(cmt)
nên \(\widehat{BMA}=\widehat{CMA}\)(hai góc tương ứng)
mà tia MA nằm giữa hai tia MB,MC
nên MA là tia phân giác của \(\widehat{BMC}\)(đpcm)
c) Ta có: AB=AC(ΔABC cân tại A)
nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(4)
Ta có: MB=MC(ΔMBC cân tại M)
nên M nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(5)
Từ (4) và (5) suy ra AM là đường trung trực của BC
hay AM⊥BC(đpcm)
P/S 3 chữ hoa liên tiếp ko có dấu hiệu j cả thì đó là góc nhé
a,Gọi đường thẳng vuông góc vs AB,AC lần lượt cắt AB,AC tại O,H
Xét \(\Delta vuongAOC\)và\(\Delta vuongAHB\)
\(AB=AC\left(gt\right)\\ OAH\left(gocchung\right)\)
\(=>\Delta AOC=\Delta AHB\left(ch-gn\right)\)
\(=>AO=AH\left(canh.tuong.ung\right)\)
Xét tam giác vuông AOM và tam giác vuông AHM
AM cạnh chung
AO=AH (cmt)
=>Tam giác AOM=tam giác AHM (ch-cgv)
=>OAM = HAM (góc tương ứng)
=>AM là tia p/g của góc A
b,Gọi AM cắt BC tại K
Xét \(\Delta BAKva\Delta CAK\)
\(AKcanh.chung\\ AB=AC\left(gt\right)\\ BAK=CAK\left(cm.cau.a\right)\)
\(=>\Delta BAK=\Delta CAK\left(c-g-c\right)\)
\(=>BKA=CKA\left(goc.tuong.ung\right)\)
Do\(BAK+CAK=180^0=BKC\left(goc.bet\right)\)
\(=>BAK=CAK=\frac{180}{2}=90\)
\(=>AK\perp BC\)hay \(AM\perp BC\)
Ko hiểu thì ib mk chỉ :D