Cho tam giác ABC cân tại A, góc A < 90o. Kẻ BD vuông góc với AC tại D, EC vuông góc với AB tại E. Gọi I là giao điểm của CE và BD.
a, Biết AB = 15cm, AE = 9cm. Tính EC
b, Chứng minh: BD = CE
c, Chứng minh: Tam giác IBE = tam giác ICD
d, Gọi M là trung điểm của BC. Chứng minh 3 điểm A, I, M thẳng hàng
a: EC=12cm
b: Xét ΔABD vuông tại D và ΔaCE vuông tại E có
BA=CA
góc BAD chung
Do đó: ΔABD=ΔACE
Suy ra: BD=CE
c: Xét ΔIBE vuông tại E và ΔICD vuông tại D có
EB=DC
góc IBE=góc ICD
Do đó: ΔIBE=ΔICD
d: Ta có: AB=AC
nên A nằm trên đường trung trực của BC(1)
Ta co: IB=IC
nên I nằm trên đường trung trực của BC(2)
Ta có MB=MC
nen M nằm trên đường trung trực của BC(3)
Từ (1), (2) và (3) suy ra A,I,M thẳng hàng