K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2021

Sửa: \(495a+1035b⋮45,\forall a;b\)

Ta có \(495a+1035b=45\left(11a+23b\right)⋮45\)

AH
Akai Haruma
Giáo viên
27 tháng 11 2021

Lời giải:
Theo công thức hằng đẳng thức thì:

$a^n-b^n=(a-b)(a^{n-1}+a^{n-2}b+....+ab^{n-2}+b^{n-1})\vdots a-b$ (đpcm)

Với $n$ lẻ:

$a^n+b^n=(a+b)(a^{n-1}-a^{n-2}b+....-ab^{n-2}+b^{n-1})\vdots a+b$ (đpcm)

16 tháng 11 2021

Với \(n=1\Leftrightarrow a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)⋮\left(a+b\right)\)

Giả sử \(n=k\Leftrightarrow\left(a^{2k+1}+b^{2k+1}\right)⋮\left(a+b\right)\)

Với \(n=k+1\)

Cần cm: \(\left(a^{2k+3}+b^{2k+3}\right)⋮\left(a+b\right)\left(1\right)\)

\(\Leftrightarrow a^{2k+3}+b^{2k+3}=a^{2k+1}\cdot a^2+b^{2k+1}\cdot b^2\\ =a^{2k+1}\cdot a^2+b^{2k+1}\cdot a^2-b^{2k+1}\cdot a^2+b^{2k+1}\cdot b^2\\ =a^2\left(a^{2k+1}+b^{2k+1}\right)-b^{2k+1}\left(a^2-b^2\right)\)

Do \(\left(a^{2k+1}+b^{2k+1}\right)⋮\left(a+b\right);\left(a^2-b^2\right)⋮\left(a-b\right)\)

Do đó \(\left(1\right)\) luôn đúng

Theo pp quy nạp suy ra đpcm

29 tháng 8 2020

Đáp án: theo đề bài :

ab+4=x^2

<=>x^2-4=ab

<=>x^2-2^2=ab =>(x+2)(x-2)=ab

29 tháng 8 2020

Với b=a+4 thì ab+4 là số chính phương.

Chứng minh: Với b=4 thì

ab+4= a(a+4) +4 =a2+4a+4=(a+2)2

27 tháng 12 2015

Tick nha

Này nhé:
Ta có:
Giả sử: ab + 4 = A2

<=>a2 - 4 = ab

<=> A2 - 22 = ab

<=> (A+2)(A-2) = ab : luôn đúng với mọi a,b

=> Đpcm

Nhớ tick đó!

25 tháng 8 2020

nhanh để mik tích

Đặt ab + 4 = m22 (m ∈ N)

 ⇒ab = m22− 4 = (m − 2) (m + 2)

 ⇒b =(m−2).(m+2)a(m−2).(m+2)a

Ta có:m=a+2⇒⇒ m-2=a

⇒⇒b=a(a+4)aa(a+4)a=a+4

Vậy với mọi số tự nhiên a luôn tồn tại b = a + 4 để ab + 4 là số chính phương.