K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2020

ABCEDO

a) Xét △ABD và △ACE có:

           AB = AC (gt)

           \(\widehat{A}\) chung

           AD = AE (gt)

\(\Rightarrow\)△ABD = △ACE (c.g.c)

\(\Rightarrow\)DB = EC (cặp cạnh tương ứng)

b) Ta có :△ABD = △ACE

\(\Rightarrow\widehat{B_1}=\widehat{C_1}\)  (cặp góc tương ứng)

Mà \(\widehat{ABC}=\widehat{ACB}\) ( △ABC cân tại đỉnh A)

\(\Rightarrow\widehat{ABC}-\widehat{B_1}=\widehat{ACB}-\widehat{C_1}\)

\(\Rightarrow\widehat{OBC}=\widehat{OCB}\)

\(\Rightarrow\)△OBC cân tại đỉnh O

\(\Rightarrow\)OB = OC

Ta có: DB = EC (cmt)

           OB = OC

\(\Rightarrow\)DB - OB = EC - OC

\(\Rightarrow\)OE = OD

\(\Rightarrow\)△ODE cân đỉnh O (ĐPCM)

c) △OBC cân tại đỉnh O

\(\Rightarrow\)\(\widehat{OCB}=\frac{180^o-\widehat{BOC}}{2}\)

    △ODE cân tại đỉnh O

\(\Rightarrow\widehat{DEO}=\frac{180^o-\widehat{DOE}}{2}\)

Mà \(\widehat{BOC}=\widehat{DOE}\)(đối đỉnh)

\(\Rightarrow\widehat{DEO}=\widehat{OCB}\)

Vì 2 góc này nằm ở vị trí so le trong

\(\Rightarrow\)DE // BC (ĐPCM)

2 tháng 3 2022

đúng đúng haha

14 tháng 1 2020

Sửa câu c:  DE // BE thành DE // BC nhé

A B C D E O

GT 

 △ABC cân tại A.                                       

 D \in  AC; E \in  AB  : AD = AE

 BD ∩ ED = { O }

KL

 a, DB = EC

 b, △OBC cân; △ODE cân

 c, DE // BE 

Bài giải:

a, Vì △ABC cân tại A (gt) => AB = AC

Xét △BAD và △CAE 

Có: AB = AC (cmt)

  BAC là góc chung

      AD = AE (gt)    

=> △BAD = △CAE (c.g.c)

=> DB = CE (2 cạnh tương ứng)

b, Vì △BAD = △CAE (cmt)

=> ABD = ACE (2 góc tương ứng) và ADB = CEA (2 góc tương ứng)

Ta có: CEA + CEB = 180o (2 góc kề bù)

ADB + BDC = 180o (2 góc kề bù)

Mà ADB = CEA (cmt)

=> CEB = BDC 

Lại có: AB = AE + EB

AC = AD + DC

Mà AB = AC (gt) ; AD = AE (gt)

=> EB = DC

Xét △BOE và △COD

Có: OBE = OCD (cmt)

         BE = CD (cmt)

      BEO = CDO (cmt)

=> △BOE = △COD (g.c.g)

=> OB = OC (2 cạnh tương ứng) và OE = OD (2 cạnh tương ứng)

Xét △OED có: OE = OD (cmt) => △OED cân tại O

Xét △OBC có: OB = OC (cmt) => △OBC cân tại O

c, Xét △AOD có: AE = AD (gt) => △AOD cân tại A => AED = (180o - EAD) : 2    (1)

Vì △ABC cân tại A (gt) => ABC = (180o - BAC) : 2                                               (2)

Từ (1) và (2) => AED = ABC

Mà 2 góc này nằm ở vị trí đồng vị

=> ED // BC (dhnb)

8 tháng 2 2020

ok thanks

18 tháng 4 2018

 

19 tháng 2 2020

a) Xét ΔABD và ΔACE có:

AB=ACAB=AC (do ΔABC cân đỉnh A)

ˆA^ : góc chung

AD=AE (giả thiết)

⇒ΔABD=ΔACE (c.g.c)

⇒DB=EC (hai cạnh tương ứng)

b) ΔABD=ΔACE⇒ˆB1=ˆC1 (hai góc tương ứng)

Mà ˆABC=ˆACB (do ΔABC cân đỉnh A)

⇒ˆABC−ˆB1=ˆACB−ˆC1

⇒ˆOBC=ˆOCB

⇒ΔOBC cân đỉnh O (đpcm)

1) Ta có: ΔABC cân tại A(gt)

nên \(\widehat{B}=\widehat{C}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của các góc ở đáy trong ΔABC cân tại A)(1)

\(\Leftrightarrow\widehat{B}=\widehat{C}=\dfrac{180^0-50^0}{2}=65^0\)

Vậy: \(\widehat{B}=65^0\)\(\widehat{C}=65^0\)

2) Xét ΔADE có AD=AE(gt)

nên ΔADE cân tại A(Định nghĩa tam giác cân)

\(\widehat{ADE}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔADE cân tại A)(2)

Từ (1) và (2) suy ra \(\widehat{ADE}=\widehat{ABC}\)

mà \(\widehat{ADE}\) và \(\widehat{ABC}\) là hai góc ở vị trí đồng vị

nên DE//BC(Dấu hiệu nhận biết hai đường thẳng song song)

3) Ta có: AD+DB=AB(D nằm giữa A và B)

AE+EC=AC(E nằm giữa A và C)

mà AB=AC(ΔABC cân tại A)

và AD=AE(gt)

nên DB=EC

Xét ΔDBC và ΔECB có 

DB=EC(cmt)

\(\widehat{DBC}=\widehat{ECB}\)(cmt)

BC chung

Do đó: ΔDBC=ΔECB(c-g-c)

⇒CD=BE(hai cạnh tương ứng)

4) Ta có: ΔDBC=ΔECB(cmt)

nên \(\widehat{DCB}=\widehat{EBC}\)(hai góc tương ứng)

hay \(\widehat{OBC}=\widehat{OCB}\)

Xét ΔOBC có \(\widehat{OBC}=\widehat{OCB}\)(cmt)

nên ΔOBC cân tại O(Định lí đảo của tam giác cân)

Ta có: \(\widehat{OBC}=\widehat{OCB}\)(cmt)

mà \(\widehat{OBC}=\widehat{OED}\)(hai góc so le trong, DE//BC)

và \(\widehat{OCB}=\widehat{ODE}\)(hai góc so le trong, DE//BC)

nên \(\widehat{ODE}=\widehat{OED}\)

Xét ΔODE có \(\widehat{ODE}=\widehat{OED}\)(cmt)

nên ΔODE cân tại O(Định lí đảo của tam giác cân)

20 tháng 1 2021
11 tháng 10 2017

\(\widehat{A}=\widehat{B}=65\)                                      

11 tháng 10 2017

1) a) vì tam giác ABC cân tại a --> góc B = Góc C = (180 - 50 ) :2 = 65 độ                                                                                                        b) vì AD=AE --> tam giác ADE cân tại A.                                                                                                                                                              mà gốc A= 50 độ --> góc D = góc E= 65 độ .    --> góc D= Góc B ( vì cùng bằng 65 độ )  mà 2 góc này là 2 góc đồng vị của 2 đường thẳng DE và BC nên DE // BC                                                                                                                                                                             2) a ) vì tam giác ABC cân --> AB=AC (1 mà AD=AE ( gt) (2)    và BD = AB - AD  (3) , EC= AC - AE (4)                                                               Từ (1) (2) (3) (4)  --> BD= EC                                                                                                                                                                       b) ta có góc ABC = AC (vì tam giác ABC cân tại A ) hay góc DBC = góc ECB                                                                                                  xét tam giác DBC và tan giác ECB có :                                                                                                                                                             +)  DBC=ECB ( cmt) +) DB=EC ( CM phần a ) + ) cạnh BC chung                                                                                                            nên tam giác DBC = tam giac ECB ( cgc)--> EBC= DCB ( 2 góc tương ứng ) hay OBC = OCB                                                                 --> tam giác OBC cân tại O                                                                                                                                               chứng minh DE// BC như bài 1  --> ODE = OED --> tam giác ODE cân tại O                                                                                                         ( Bài 2 này em cứ làm phần c trước nhé em để nó ngắn em à )                                                                                                                3)a) Ta có tam giác ABC vuông tại A --> góc ABC+ góc ACB = 90 độ   mà ABC = 60 đôh ( gt)  --> ACB = 30 độ                                     ta lại có Cx vuông góc với BC tại c --> BCx = ACB + ACx = 90 độ   makf ACB = 30 độ --> ACx = 60 độ  (1)                                              và AC = AE (gt)   (2) từ (1) và (2) --> tam giavc ACE là tam giác đều                                                                                                           b) ta có ABF = 120 độ ( Vì là góc kề bù của góc ABC =60 độ )                                                                                                               tam giác ABF có AB=BF (gt) --> tam giác ABF cân tại B --> BÀ =BFA= 9 180 - 120 ) : 2 = 30 độ                                                                 vì tam giác ACE là  tam giác đều -- EAC = 60 độ                                                                                                                                              ta có EAF = EAC + CAF + BAF = 60 + 90 + 30 = 180 độ --> 3 điểm E , A F thẳng hàng

24 tháng 1 2021

undefined

\(a,\text{Do }\Delta ABC\text{ cân tại A}\Rightarrow AB=AC\)

\(\text{Xét }\Delta ABD\text{ và }\Delta ACE\text{ có:}\)

\(AB=AC\left(cmt\right)\left(1\right)\)

\(\widehat{A}\text{ chung}\left(2\right)\)

\(AD=AE\left(gt\right)\left(3\right)\)

\(\text{Từ (1),(2) và (3)}\Rightarrow\Delta ABD=\Delta ACE\left(c.g.c\right)\)

\(\Rightarrow\widehat{ABD}=\widehat{ACE}\left(\text{2 góc tương ứng}\right)\)

\(\text{Vậy }\widehat{ABD}=\widehat{ACE}\)

\(b,+\text{)}\widehat{ABD}=\widehat{ACE}\left(\text{câu a}\right)\text{ hay }\widehat{EBI}=\widehat{DCI}\)

\(+\text{)}\text{Ta có: }AE+BE=AB,AD+CD=AC\)

\(\text{Mà }AE=AD\left(\text{câu a}\right),AB=AC\left(\text{câu a}\right)\)

\(\Rightarrow BE=CD\)

\(+\text{)Xét }\Delta EBI\text{ có:}\widehat{EBI}+\widehat{BIE}+\widehat{IEB}=180^o\left(\text{tổng 3 góc trong }\Delta\right)\left(4\right)\)

\(\text{Xét }\Delta DCI\text{ có:}\widehat{DCI}+\widehat{CID}+\widehat{IDC}=180^o\left(\text{tổng 3 góc trong }\Delta\right)\left(5\right)\)

\(\text{Từ (4) và (5)}\Rightarrow\widehat{EBI}+\widehat{BIE}+\widehat{IEB}=\widehat{DCI}+\widehat{CID}+\widehat{IDC}\)

\(\text{Mà }\widehat{EBI}=\widehat{DCI}\left(cmt\right),\widehat{BIE}=\widehat{CID}\left(\text{đối đỉnh}\right)\)

\(\Rightarrow\widehat{IEB}=\widehat{IDC}\)

\(\text{Xét }\Delta EBI\text{ và }\Delta DCI\text{ có:}\)

\(\widehat{IEB}=\widehat{IDC}\left(cmt\right)\left(6\right)\)

\(BE=CD\left(cmt\right)\left(7\right)\)

\(\widehat{EBI}=\widehat{DCI}\left(cmt\right)\left(8\right)\)

\(\text{Từ (6),(7) và (8)}\Rightarrow\Delta EBI=\Delta DCI\left(g.c.g\right)\)

\(\Rightarrow BI=CI\left(\text{2 cạnh tương ứng}\right)\)

\(\Rightarrow\Delta IBC\text{ cân tại I}\)

\(\text{Vậy }\Delta IBC\text{ là tam giác cân}\)

\(c,+\text{)Do M là trung điểm của BC}\left(gt\right)\Rightarrow BM=CM\)

\(\)\(\text{Xét }\Delta ABM\text{ và }\Delta ACM\text{ có:}\)

\(AB=AC\left(\text{câu a}\right)\left(9\right)\)

\(AM\text{ chung}\left(10\right)\)

\(BM=CM\left(cmt\right)\left(11\right)\)

\(\text{Từ (9),(10) và (11)}\Rightarrow\Delta ABM=\Delta ACM\left(c.c.c\right)\)

\(\Rightarrow\widehat{BAM}=\widehat{CAM}\left(\text{2 góc tương ứng}\right)\)

\(\Rightarrow AM\text{ là tia phân giác }\widehat{BAC}\)

\(+\text{)}\Delta EBI=\Delta DCI\left(\text{câu b}\right)\)

\(\Rightarrow EI=DI\left(\text{2 cạnh tương ứng}\right)\)

\(\text{Xét }\Delta EAI\text{ và }\Delta DAI\text{ có:}\)

\(EI=DI\left(cmt\right)\left(12\right)\)

\(AI\text{ chung}\left(13\right)\)

\(AE=AD\left(gt\right)\left(14\right)\)

\(\text{Từ (12),(13) và (14)}\Rightarrow\Delta EAI=\Delta DAI\left(c.c.c\right)\)

\(\Rightarrow\widehat{EAI}=\widehat{DAI}\left(\text{2 góc tương ứng}\right)\)

\(\Rightarrow AI\text{ là tia phân giác }\widehat{EAD}\)

\(\text{Hay }AI\text{ là tia phân giác }\widehat{BAC}\left(\text{do E}\in AB,D\in AC\right)\left(15\right)\)

\(\text{Mà }AM\text{ là tia phân giác }\widehat{BAC}\left(cmt\right)\left(16\right)\)

\(\text{Từ (15) và (16)}\Rightarrow A,I.M\text{ thẳng hàng}\left(đpcm\right)\)