vòi nước cùng chảy vào một bể không có nước thì sau 6 giờ bể đầy.Nếu vòi thứ nhất chảy trong 2h , vòi thứ hai chảy trong 3h thì đầy được 2/5 bể.Hỏi mỗi vòi chảy bao lâu thì sẽ đầy bể ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi thời gian vòi thứ nhất chảy một mình đầy bể là x ( giờ, x > 6)
thời gian voi thứ hai chảy một mình đầy bể là y ( giờ, y > 6)
Suy ra một giờ vòi thứ nhất chảy được \(\frac{1}{x}\)(bể)
một giờ vòi thứ hai chảy được \(\frac{1}{y}\)(bể)
*)Cả hai vòi cùng chảy vào một bể không có nước thì sau 6 giờ bể đầy
=> Một giờ cả hai vòi chày được \(\frac{1}{6}\)(bể)
Do đó ta có phương trình: \(\frac{1}{x}+\frac{1}{y}=\frac{1}{6}\)(1)
*)Vòi thứ nhất chảy trong 2 giờ được: \(\frac{2}{x}\)(bể)
Vòi thứ hai chảy trong 3 giờ được: \(\frac{3}{y}\)(bể)
Khi đó hai vòi chày được 1/2 bể nên ta có: \(\frac{2}{x}+\frac{3}{y}=\frac{1}{2}\)(2)
Từ (1) và (2) ta có hệ phương trình:
\(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac{1}{6}\\\frac{2}{x}+\frac{3}{y}=\frac{1}{2}\end{cases}}\)
<=> \(\hept{\begin{cases}\frac{2}{x}+\frac{2}{y}=\frac{1}{3}\\\frac{2}{x}+\frac{3}{y}=\frac{1}{2}\end{cases}}\)
=> \(\frac{1}{y}=\frac{1}{6}\)(sai đề rồi nhé)
Gọi thời gian vòi 1 và vòi 2 chảy một mình đầy bể lần lượt là x và y (h) (ĐK: x, y>0�, �>0).
Mỗi giờ vòi 1 chảy được 1x1� bể và vòi 2 chảy được 1y1� bể.
Cả 2 vòi cùng chảy trong 6 giờ thì đầy bể nên mỗi giờ cả hai vòi cùng chảy được 1616 bể, ta có phương trình 1x+1y=16(1)1�+1�=16(1)
Trong 2 giờ vòi 1 chảy được 2x2� bể, trong 3 giờ vòi 2 chảy được 3y3� bể.
Nếu để riêng vòi thứ nhất chảy trong 2 giờ, sau đó đóng lại va mở vòi thứ hai chảy tiếp trong 3 giờ nữa thì được 2525 bể nên ta có phương trình 2x+3y=25(2)2�+3�=25(2)
Từ (1)(1) và (2)(2) ta có hệ
{1x+1y=162x+3y=25⇔{2x+2y=132x+3y=25⇔{1y=1151x=110⇔{x=10y=15(tm){1�+1�=162�+3�=25⇔{2�+2�=132�+3�=25⇔{1�=1151�=110⇔{�=10�=15(��)
Vậy thời gian vòi 1 và vòi 2 chảy một mình đầy bể lần lượt là 10 giờ và 15 giờ.
Chọn D
Gọi thời gian vòi 1 và vòi 2 chảy đầy bể lần lượt là a,b
Theo đề, ta có:
1/a+1/b=1/12 và 4/a+6/b=2/5
=>a=20 và b=30
gọi mỗi vòi 1 chảy riêng đầy bể a(h) vìu 2 trong b(h) (a,b>1,5)
trong 1 giờ vòi 1 chảy được \(\frac{1}{a}\)bể vòi 2 chảy được \(\frac{1}{a}+\frac{1}{b}=\frac{a+b}{ab}\)bể
mà cả 2 vòi cùng chảy sau 1h30p=1,5h đầy bể nên \(\frac{a+b}{ab}=\frac{1}{1,5}=\frac{2}{3}\)\(\Leftrightarrow\)\(\frac{1}{a}+\frac{1}{b}=\frac{2}{3}\left(1\right)\)
nếu mở vòi 1 trong 15 phút = 0,25h rồi khóa lại mở vòi 2 trong 20 phút = \(\frac{1}{3}h\)thì được \(\frac{1}{5}\)bể
\(\frac{0,25}{a}+\frac{1}{3b}=\frac{1}{5}\Leftrightarrow\frac{1}{4a}+\frac{1}{3b}=\frac{1}{5}\left(2\right)\)
từ (1) và (2) ta có hệ phương trình
\(\hept{\begin{cases}\frac{1}{a}+\frac{1}{b}=\frac{2}{3}\\\frac{1}{4a}+\frac{1}{3b}=\frac{1}{5}\end{cases}\Leftrightarrow\hept{\begin{cases}a=3,75\\b=2,5\end{cases}}}\)
vậy ......................
Mình thắc mắc nếu sau 1h 2 vòi cùng chảy đc a+b/ab bể mà cả 2 cùng chảy sau 1h30p thì làm sao nó bằng nhau vậy?
P/s chỉ 1 giờ vòi thứ nhất chảy được là:
1:2=1/2(bể)
P/s chỉ 1 giờ vòi thứ hai chảy được là:
1:3=1/3(bể)
P/s chỉ 1 giờ cả hai vỏi chảy được là:
1/2+1/3=5/6
Cả hai vòi chảy trong số thời gian để đầy bể là:1:5/6=6/5(giờ)
6/5 giờ=72 phút
Hai vòi nước chảy vào một bể không có nước.Nếu chảy riêng từng vòi thì vòi thứ nhất chảy trong 2 giờ thì đầy bể,vòi thứ hai chảy trong 3 giờ thì đầy bể.Hỏi nếu cả hai vòi cùng chảy thì sau bao lâu sẽ đầy bể nước?
P/s chỉ 1 giờ vòi thứ nhất chảy được là:
1:2=1/2(bể)
P/s chỉ 1 giờ vòi thứ hai chảy được là:
1:3=1/3(bể)
P/s chỉ 1 giờ cả hai vỏi chảy được là:
1/2+1/3=5/6
Cả hai vòi chảy trong số thời gian để đầy bể là:1:5/6=6/5(giờ)
6/5 giờ=72 phút
Gọi thời gian mà vòi 1 chảy 1 mình đầy bể là x, vòi 2 chảy 1 mình đầy bể là y(x,y>0, đơn vị là h). Theo đề bài ta có:
1 h thì vòi 1 chảy được là \(\dfrac{1}{x}\) (bể); 1 h vòi 2 chảy được là \(\dfrac{1}{y}\) (bể)
Vì 2 vòi cùng chảy vào 1 bể ko có nước thì 6h đầy bể nên ta có phương trình: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{6}\)(1)
Nếu vòi 1 chảy trong 2h và vòi 2 chảy trong 3 h thì được \(\dfrac{2}{5}h\) nên ta có phương trình: \(\dfrac{2}{x}+\dfrac{3}{y}=\dfrac{2}{5}\left(2\right)\)
Từ (1) và (2) ta có hệ phương trình: \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{6}\left(1\right)\\\dfrac{2}{x}+\dfrac{3}{y}=\dfrac{2}{5}\left(2\right)\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{2}{y}=\dfrac{1}{3}\left(3\right)\\\dfrac{2}{x}+\dfrac{3}{y}=\dfrac{2}{5}\left(2\right)\end{matrix}\right.\)
Trừ từng vế của (2) cho (3) ta được:
\(\dfrac{1}{y}=\dfrac{2}{5}-\dfrac{1}{3}\Leftrightarrow\dfrac{1}{y}=\dfrac{1}{15}\Rightarrow y=15\) Thay vào (1) ta được:
\(\dfrac{1}{x}+\dfrac{1}{15}=\dfrac{1}{6}\Leftrightarrow\dfrac{1}{x}=\dfrac{1}{6}-\dfrac{1}{15}=\dfrac{5-2}{30}=\dfrac{3}{30}=\dfrac{1}{10}\Rightarrow x=10\)
Vậy ...