Tìm tất cả các số nguyên a b, sao cho (a + 3b + 1).(2a + a + b) = 225.
Làm ơn giải gấp giúp mình ạ, mình vô cùng cảm ơn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mk nghĩ đề bài thế này:
(100a+3b+1)(2a+10a+b)=225
mk ko chắc lắm nhưng có lẽ thế
Ta thấy 225 là số lẻ nên 100a + 3b + 1 và 2a + 10a + b cũng là các số lẻ.
Do 100a + 3b + 1 là số lẻ mà 100a là số chẵn nên 3b là số chẵn tức b là só chẵn.
Kết hợp với 2a + 10a + b là số lẻ ta có 2a là số lẻ
\(\Leftrightarrow2^a=1\Leftrightarrow a=0\).
Khi đó: \(\left(3b+1\right)\left(b+1\right)=225\)
\(\Leftrightarrow\left(b-8\right)\left(3b+28\right)=0\Leftrightarrow b=8\) (Do b là số tự nhiên).
Vậy a = 0; b = 8.
Chào bạn!
Ta sẽ chứng minh bài toán này theo phương pháp phản chứng
Giả sử \(\left(a;c\right)=m\)\(V\text{ới}\)\(m\in N\)\(m\ne1\)
Khi đó \(\hept{\begin{cases}a=k_1m\\c=k_2m\end{cases}}\)
Thay vào \(ab+cd=p\)ta có : \(k_1mb+k_2md=p\Leftrightarrow m\left(k_1b+k_2d\right)=p\)
Khi đó p là hợp số ( Mâu thuẫn với đề bài)
Vậy \(\left(a;c\right)=1\)(đpcm)
Vì \(f\left(b\right)\) đồng biến nên nếu \(f\left(-8\right)>0\Rightarrow f\left(b\right)>0;\forall b>-8\)
\(\Rightarrow f\left(b\right)\le0\) có nhiều nhất 3 nghiệm nguyên thuộc (-12;12) là -11;-10;-9 (ktm yêu cầu đề bài)
Do đó \(f\left(-8\right)\le0\)
Hiểu đơn giản thì đếm từ -11 trở đi thêm 4 số nguyên ta sẽ chạm tới mốc -8
Câu này trình bày hơi dài nên mình sr nhá
Bạn có thể tìm ở đây . Dựa dô đó làm nhá
https://olm.vn/thanhvien/monkeydluffydtb
chúc bạn hok tốt ##
Câu hỏi của ♡♡♡我有你♡♡♡ - Toán lớp 7 - Học toán với OnlineMath