Cho tam giác ABC cân ở A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho CE = BD. Vẽ BH vuông góc với AD tại H, CK vuông góc với AE tại K.Hai đường thẳng HB và KC cắt nhau tại I.Chứng minh rằng:
a) Tam giác ADE cân.
b) Tam giác BIC cân
c) IA là tia phân giác của góc BIC
Các bạn giúp mình nhanh nhé !
a, Vì △ABC cân tại A => AB = AC và ABC = ACB
Ta có: ABC + ABD = 180o (2 góc kề bù)
và ACB + ACE = 180o (2 góc kề bù)
Mà ABC = ACB (cmt)
=> ABD = ACE
Xét △ABD và △ACE
Có: AB = AC (cmt)
ABD = ACE (cmt)
BD = CE (gt)
=> △ABD = △ACE (c.g.c)
=> AD = AE (2 cạnh tương ứng)
=> △ADE cân tại A
b, Xét △HBD vuông tại H và △KCE vuông tại K
Có: BD = CE (gt)
HDB = KEC (△ABD = △ACE)
=> △HBD = △KCE (ch-gn)
=> HBD = KCE (2 góc tương ứng)
Mà HBD = CBI (2 góc đối đỉnh) và KCE = BCI (2 góc đối đỉnh)
=> CBI = BCI
=> △BIC cân tại I
c, Xét △ABI và △ACI
Có: AB = AC (cmt)
BI = CI (△BIC cân tại I)
AI là cạnh chung
=>△ABI = △ACI (c.c.c)
=> BIA = CIA (2 góc tương ứng)
Mà IA nằm giữa IB, IC
=> IA là tia phân giác của góc BIC