xác định hề thức f(x) = 2ax^2+bx-3 chia hết cho 4x-1 và x+3
Em cảm ơn trước ạ ^^
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(f\left(x\right)⋮4x-1\Rightarrow f\left(\dfrac{1}{4}\right)=0\)
\(f\left(x\right)⋮x+3\Rightarrow f\left(-3\right)=0\)
Ta có hpt:\(\left\{{}\begin{matrix}2\left(\dfrac{1}{4}\right)^2a+\dfrac{1}{4}b-3=0\\2.\left(-3\right)^2a-3b-3=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=11\end{matrix}\right.\)
bạn ơi chỗ f(1/4)=0 làm sao ra được vậy, mình không hiểu
Cho đa thức F(x) = 2ax^2 + bx (a,b là hằng số). Xác định a,b để đa thức F(x) có nghiệm x = -1 và F(1) = 4
Vì đa thức F(x) có nghiệm x = -1 nên F(-1) = 0
⇒ 2a - b = 0 ⇒ b = 2a
Vì F(1) = 4 ⇒ 2a + b = 4 ⇒ b = 4 - 2a(1)
Từ đây ta có 2a = 4 - 2a ⇒ 4a = 4 ⇒ a = 1
Thay a=1 vào (1)
=> b=4-2.1=4-2=2
Vậy a=1 vs b=2
Dễ mak , chỉ cần áp dụng định lý Bơ- du , thay x =1/4 và x = -3 vào Đa thức , nó ra 2 phương trình thì bạn giải hệ là xong