K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2021

Bài 2: 

Ta có: \(\dfrac{-\text{Δ}}{4a}=-3\)

\(\Leftrightarrow-\text{Δ}=-12a\)

\(\Leftrightarrow b^2-4a=12a\)

\(\Leftrightarrow b^2-16a=0\left(1\right)\)

Thay x=-1 và y=6 vào (P), ta được:

\(a\cdot\left(-1\right)^2+b\left(-1\right)+1=6\)

\(\Leftrightarrow a-b=5\)

\(\Leftrightarrow a=b+5\)(2)

Thay (2) vào (1), ta được:

\(b^2-16\left(b+5\right)=0\)

\(\Leftrightarrow b^2-16b+64-144=0\)

\(\Leftrightarrow\left(b-8\right)^2=144\)

\(\Leftrightarrow\left[{}\begin{matrix}b=20\\b=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=25\\a=1\end{matrix}\right.\)

18 tháng 10 2021

Còn câu a,c thì làm sao v ạ.

13 tháng 11 2021

Bài 2: 

a: 

x-∞-3+∞
y+∞-4+∞

 

15 tháng 1 2019

Hàm số Giải bài 9 trang 50 sgk Đại số 10 | Để học tốt Toán 10 có :

+ Tập xác định D = R.

+ Trên (–∞; 0), hàm số y = –x nghịch biến.

Trên (0 ; +∞), hàm số y = x đồng biến.

Bảng biến thiên :

Giải bài 9 trang 50 sgk Đại số 10 | Để học tốt Toán 10

+ Đồ thị hàm số gồm hai phần:

Phần thứ nhất: Nửa đường thẳng y = –x giữ lại phần bên trái trục tung.

Phần thứ hai: Nửa đường thẳng y = x giữ lại phần bên phải trục tung.

Giải bài 9 trang 50 sgk Đại số 10 | Để học tốt Toán 10

11 tháng 10 2018

TXĐ: D = R

Sự biến thiên:

y′ = 3 x 2  – 6x = 3x(x – 2)

y′=0 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Hàm số đồng biến trên mỗi khoảng (– ∞ ;0), (2;+ ∞ )

Hàm số nghịch biến trên khoảng (0; 2).

Hàm số đạt cực đại tại x = 0 ; y CĐ  = y(0) = 0

Hàm số đạt cực tiểu tại x = 2;  y CT  = y(2) = -4.

Giới hạn: Giải sách bài tập Toán 12 | Giải sbt Toán 12

Điểm uốn: y” = 6x – 6, y” = 0 ⇔ x = 1; y(1) = –2

Suy ra đồ thị có điểm uốn I(1; -2)

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Đồ thị:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Đồ thị cắt trục hoành tại O(0;0), A(3;0). Đồ thị đi qua điểm B(-1;-4); C(2;-4).

11 tháng 7 2019

y = 2x2 + x + 1

+ Tập xác định: R

+ Đỉnh A(–1/4 ; 7/8).

+ Trục đối xứng x = –1/4.

+ Đồ thị không giao với trục hoành.

+ Giao điểm với trục tung B(0; 1).

Điểm đối xứng với B(0 ; 1) qua đường thẳng x = –1/4 là C(–1/2 ; 1)

+ Bảng biến thiên:

Giải bài 2 trang 49 sgk Đại số 10 | Để học tốt Toán 10

+ Đồ thị hàm số:

Giải bài 2 trang 49 sgk Đại số 10 | Để học tốt Toán 10

 

13 tháng 6 2017

Với m = 1 ta được hàm số: y = 2 x 2 + 2 x

- TXĐ: D = R,

- Sự biến thiên:

+ Chiều biến thiên: y' = 4x + 2

y' = 0 ⇔ x = -1/2

+ Bảng biến thiên:

Giải bài 5 trang 45 sgk Giải tích 12 | Để học tốt Toán 12

Kết luận: Hàm số nghịch biến trên (-∞; -1/2), đồng biến trên (-1/2; +∞).

Đồ thị hàm số có điểm cực tiểu là (-1/2; -1/2)

- Đồ thị:

Ta có: 2x2 + 2x = 0 ⇔ 2x(x + 1) = 0

QUẢNG CÁO

⇒ x = 0; x = -1

+ Giao với Ox: (0; 0); (-1; 0)

+ Giao với Oy: (0; 0)

Giải bài 5 trang 45 sgk Giải tích 12 | Để học tốt Toán 12

24 tháng 10 2021

hàm số tăng trên khoảng [1;+\(\infty\))

Hàm số giảm trên khoảng(-\(\infty\);-1)

23 tháng 5 2019

Tập xác định: D = R

y′=0 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Hàm số đồng biến trên mỗi khoảng (-1; 0) và (1; + ∞ )

Hàm số nghịch biến trên mỗi khoảng (− ∞ ; −1); (0; 1)

Hàm số đạt cực đại tại x = 0; y CĐ  = 0

Hàm số đạt cực tiểu tại x = 1 hoặc x = -1;  y CT  = −2

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Đồ thị có hai điểm uốn:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Đồ thị:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Đồ thị cắt trục hoành tại