K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2020

M M 1 M 2 A B C

Giả sử tìm được điểm M trong \(\Delta ABC\)thỏa mãn đề bài.Vẽ các tam giác đều \(AMM_1\)và \(ACM_2\)ta có :

\(\Delta AM_1M_2=\Delta AMC\left(c-g-c\right)\)

Do đó \(M_1M_2=MC\)

Vậy \(MA+MB+MC=BM+MM_1+M_1M_2\)

Tổng này đạt giá trị nhỏ nhất khi và chỉ khi bốn điểm \(B,M,M_1,M_2\)thẳng hàng

Khi đó : \(\widehat{BMA}+\widehat{AMM_1}=180^0\)và \(\widehat{AM_1M}+\widehat{AM_1M_2}=180^0\)

Mà \(\widehat{AMM_1}=\widehat{AM_1M}=60^0\)

\(\Rightarrow\widehat{AMB}=\widehat{AM_1M_2}=120^0\)

Vì \(\Delta AMC=\Delta AM_1M_2\),do đó \(\widehat{AMC}=\widehat{AM_1M_2}=120^0\)

Vậy M là điểm nằm trong tam giác ABC và \(\widehat{ABM}=\widehat{BMC}=\widehat{CMA}=120^0\).

12 tháng 3 2021

Dựng bên ngoài tam giác ABC tam giác ABD đều.

Vẽ tam giác AME đều sao cho D, E nằm cùng phía so với AM.

Dễ thấy \(\Delta AED=\Delta AMB\left(c.g.c\right)\).

Suy ra ED = MB.

Ta có \(MA+MB+MC=ME+ED+MC\ge CD\) không đổi.

Đẳng thức xảy ra khi và chỉ khi M thuộc CD và \(\widehat{AMD}=60^o\).

12 tháng 3 2021

mk ko hiểu (hay do mk học dốt quá)khocroikhocroikhocroi

9 tháng 4 2016

a) giao điểm của các đường phân giác 

b) M≡T (điểm T được gọi là điểm Toricenli của tam giác ABC).

hoặc  M≡B

9 tháng 4 2016

nếu bạn nói M trùng B thì phải nói rõ điều kiện đặt cho 3 cạnh của tam giác

7 tháng 8 2016

A B C M D E N P

Ta dựng các tam giác đều AMP , AMN , ACE , ABD , suy ra N,P,E,D cố định.

Dễ dàng chứng minh được \(\Delta APE=\Delta AMC\left(c.g.c\right)\) 

 \(\Rightarrow MC=PE\)\(AM=MP\)

Suy ra : \(AM+MC+BM=BM+MP+PE\ge BE\)(hằng số)

Tương tự , ta cũng chứng minh được \(AM=MN\)\(BM=DN\)

\(\Rightarrow AM+MC+MB=CM+MN+DN\ge CD\)(hằng số)

Suy ra MA + MB + MC đạt giá trị nhỏ nhất khi M là giao điểm của BE và CD.

Cần chú ý : Vì điều kiện các góc của tam giác nhỏ hơn 180 độ : 

\(\widehat{BAC}+\widehat{CAE}< 120^o+60^o=180\)

\(\widehat{BAC}+\widehat{BAD}< 120^o+60^o=180^o\)

nên BE cắt AC tại một điểm nằm giữa A và C , CD cắt AB tại một điểm nằm giữa A và B. Do đó tồn tại giao điểm M của CD và BE.

1 tháng 8 2016

em học lớp 7

10 tháng 2 2016

mik rất cần, ai giúp mik 2 bài này với