Giúp mình với
a)(x+4)(2x-4)<0
b)(x-5)(3x-6)<0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a.
\(\frac{10}{x+2}=\frac{60}{6(x+2)}=\frac{60(x-2)}{6(x+2)(x-2)}=\frac{60(x-2)}{6(x^2-4)}\)
\(\frac{5}{2x-4}=\frac{15(x+2)}{6(x-2)(x+2)}=\frac{15(x+2)}{6(x^2-4)}\)
\(\frac{1}{6-3x}=\frac{x+2}{3(2-x)}=\frac{2(x+2)^2}{6(2-x)(2+x)}=\frac{-2(x+2)^2}{6(x^2-4)}\)
b.
\(\frac{1}{x+2}=\frac{x(2-x)}{x(x+2)(2-x)}=\frac{x(2-x)}{x(4-x^2)}\)
\(\frac{8}{2x-x^2}=\frac{8(x+2)}{(x+2)x(2-x)}=\frac{8(x+2)}{x(4-x^2)}\)
c.
\(\frac{4x^2-3x+5}{x^3-1}\)
\(\frac{1-2x}{x^2+x+1}=\frac{(1-2x)(x-1)}{(x-1)(x^2+x+1)}=\frac{-2x^2+3x-1}{x^3-1}\)
\(-2=\frac{-2(x^3-1)}{x^3-1}\)
a) \(=2x\left(x-25\right)\)
b) \(=x\left(x-4\right)-\left(x-4\right)=\left(x-4\right)\left(x-1\right)\)
c) \(=x^2-\left(y^2-12y+36\right)=x^2-\left(y-6\right)^2=\left(x-y+6\right)\left(x+y-6\right)\)
d) \(=y\left(x^2+4xz+4yz\right)\)
\(a,=\left(x+y\right)\left(y+z\right)\\ b,=x\left(x^2+2x+1\right)=x\left(x+1\right)^2\\ c,=\left(x-y\right)\left(x+y\right)+\left(x-y\right)=\left(x+y+1\right)\left(x-y\right)\\ d,= \left(2x-5\right)\left(2x+5\right)\\ e,=\left(4y-3\right)\left(4y+3\right)\)
\(a,x-\dfrac{5}{7}=\dfrac{19}{21}\\ x=\dfrac{34}{21}\\ b,\dfrac{5}{3}-\left|x-\dfrac{1}{5}\right|=\dfrac{1}{3}\\ \left|x-\dfrac{1}{5}\right|=\dfrac{4}{3}\\ TH1:x-\dfrac{1}{5}=\dfrac{4}{3}\\ x=\dfrac{23}{15}\\ TH2:x-\dfrac{1}{5}=-\dfrac{4}{3}\\ x=-\dfrac{17}{15}\\ c,x-\dfrac{2}{5}=\dfrac{1}{4}\\ x=\dfrac{13}{20}\\ d,5\sqrt{x}-30=15\\ 5\sqrt{x}=45\\ \sqrt{x}=9\\ x=9^2=81\)
Ta có: \(A=\dfrac{1-0.5\cdot\left(3.84-2.4\right):0.8}{\dfrac{4}{5}-\left(1\dfrac{1}{3}-2\dfrac{1}{6}\right)-1.5}\)
\(=\dfrac{1-0.5\cdot1.44:0.8}{\dfrac{4}{5}-\left(\dfrac{4}{3}-\dfrac{13}{6}\right)-\dfrac{3}{2}}\)
\(=\dfrac{1-0.9}{\dfrac{4}{5}+\dfrac{5}{6}-\dfrac{3}{2}}=\dfrac{0.1}{\dfrac{2}{15}}=\dfrac{3}{4}\)
Giải:
A=1-0,5.(3,84-2,4):0,8 / 4/5-(1 1/3 - 2 1/6)-1,5
A=1-0,5.1,44:0.8 / 4/5-(4/3-13/6)-3/2
A=1-0.9 / 4/5-(-5/6)-3/2
A=0.1 / 2/15
A= 1/10 : 2/15
A=3/4
Chúc bạn học tốt!
xy + 2x + y + 2 = y(x + 1) + 2(x + 1) = (x + 1).(y + 2)
x(x - 1) + x(x + 3) = x(x - 1 + x + 3) = x. ( 2x + 2) = 2x.(x + 1)
\(-4x^2+8x-4=-4\left(x^2-2x+1\right)=-4\left(x-1\right)^2\)
c: \(-4x^2+8x-4\)
\(=-4\left(x^2-2x+1\right)\)
\(=-4\left(x-1\right)^2\)
a: \(=\dfrac{-8}{9}-\dfrac{6}{5}+\dfrac{8}{9}=-\dfrac{6}{5}\)
c: \(=\dfrac{2}{3}-\dfrac{1}{3}=\dfrac{1}{3}\)
a) \(x^4+x^3-8x-8\)
\(=x^3\left(x+1\right)-8\left(x+1\right)\)
\(=\left(x^3+8\right)\left(x+1\right)\)
\(=\left(x+2\right)\left(x^2-2x+4\right)\left(x+1\right)\)
a) \(=x^3\left(x+1\right)-8\left(x+1\right)=\left(x+1\right)\left(x^3-8\right)=\left(x+1\right)\left(x-2\right)\left(x^2+2x+4\right)\)
b) \(=y\left(x+2\right)-3\left(x+2\right)=\left(x+2\right)\left(y-3\right)\)
c) \(=3\left(x-y\right)-a\left(x-y\right)=\left(x-y\right)\left(3-a\right)\)
\(a,\left(x+y\right)^2-2xy=x^2+2xy+y^2-2xy=x^2+y^2\left(đpcm\right)\\ b,\left(a+b\right)^2-\left(a-b\right)\left(a+b\right)=\left(a+b\right)\left(a+b-a+b\right)=2b\left(a+b\right)\left(đpcm\right)\)
a) ( x + 4 ) ( 2x - 4 ) < 0
\(\Rightarrow\hept{\begin{cases}x+4< 0\\2x-4>0\end{cases}}\) hoặc \(\hept{\begin{cases}x+4>0\\2x-4< 0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x< -4\\2x>4\end{cases}}\) hoặc \(\hept{\begin{cases}x>-4\\2x< 4\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x< -4\\x>2\end{cases}}\) ( vô lí ) hoặc \(\hept{\begin{cases}x>-4\\x< 2\end{cases}}\)
\(\Rightarrow\) - 4 < x < 2
Vậy - 4 < x < 2
@@ Học tốt
a) (x+4)(2x-4)<0
=>x+4 và 2x-4 là 2 số nguyên khác dấu
TH1 : x+4<0 =>x<0-4 =>x<-4
2x-4>0 =>2x>4 =>x>2
=> 2<x<-4 (vô lí )
( LOẠI )
TH2: x+4>0 => x>0-4 =>x>-4
2x-4<0 => 2x< 4 =>x<2
=> -4<x<2
=> x thuộc { -3;-2;-1;0;1}
Vậy x thuộc { -3;-2;-1;0;1 }
Ý b bạn tự làm nhé