Tìm GTNN của biểu thức sau : \(\frac{4}{x}+\frac{1}{4y}\) với \(x+y=\frac{5}{4}\) và \(x,y>0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
<=>4(x+y)=5
ta có:
\(S+5=\frac{4}{x}+4x+\frac{1}{4y}+4y\ge2\sqrt{\frac{4}{x}.4x}+2\sqrt{\frac{1}{4y}.4y}=2.4+2=10\)
\(\Rightarrow S\ge5\)
Vậy Min S=5 khi x=1;y=1/4
Bài này dùng Cô si ngược dấu:
Áp dụng BĐT Cô si:\(\frac{1}{x^2+1}=1-\frac{x^2}{x^2+1}\ge1-\frac{x^2}{2x}=1-\frac{x}{2}\)
Tương tự với ba BĐT còn lại và cộng theo vế ta được:\(VT\ge4-\frac{x+y+z+t}{2}=2\)
Dấu "=' xảy ra tại a = b = c = 1
Vậy min A = 2 khi và chỉ khi a = b = c = 1
tth ngược dấu nhé
\(A=\frac{1}{x^2+1}+\frac{1}{y^2+1}+\frac{1}{z^2+1}+\frac{1}{t^2+1}\)
\(\Leftrightarrow\)\(-A+4=\left(1-\frac{1}{x^2+1}\right)+\left(1-\frac{1}{y^2+1}\right)+\left(1-\frac{1}{z^2+1}\right)+\left(1-\frac{1}{t^2+1}\right)\)
\(\Leftrightarrow\)\(-A+4\ge1-\frac{x}{2}+1-\frac{y}{2}+1-\frac{z}{2}+1-\frac{t}{2}=4-\frac{x+y+z+t}{2}=2\)
\(\Leftrightarrow\)\(-A+4\ge2\)
\(\Leftrightarrow\)\(A\le2\)
Bài: Cho x,y >0, x+y>=4. Tìm giá trị nhỏ nhất của biểu thức: A= 3x + 4y +\(\frac{5}{x}+\frac{9}{y}\)
\(A=3x+4y+\frac{5}{x}+\frac{9}{y}=\frac{5}{4}x+\frac{5}{x}+\frac{9}{4}y+\frac{9}{y}+\frac{7}{4}x+\frac{7}{4}y\)
\(\ge2\sqrt{\frac{5}{4}x.\frac{5}{x}}+2\sqrt{\frac{9}{4}y.\frac{9}{y}}+\frac{7}{4}.4\)
\(=5+9+7=21\)
Dấu \(=\)khi \(x=y=2\).
\(S=x+y+\frac{3}{4x}+\frac{3}{4y}\)
\(=x+y+\frac{3}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)
\(\ge x+y+\frac{3}{x+y}\)
\(=\left(x+y+\frac{16}{9\left(x+y\right)}\right)+\frac{11}{9\left(x+y\right)}\)
\(\ge\frac{4}{3}+\frac{11}{9\cdot\frac{4}{3}}=\frac{43}{12}\)
Tại \(x=y=\frac{2}{3}\)
a/ Ta có
\(K^4+\frac{1}{4}=K^4+K^2+\frac{1}{4}-K^2=\left(K^2+\frac{1}{2}\right)^2-K^2=\left(K^2+K+\frac{1}{2}\right)\left(K^2-K+\frac{1}{2}\right)\)
Ta lại có
\(K^2+K+\frac{1}{2}=\left(K+1\right)^2-\left(K+1\right)+\frac{1}{2}\)
\(\Rightarrow K^4+\frac{1}{4}=\left(K^2-K+\frac{1}{2}\right)\left(\left(K+1\right)^2-\left(K+1\right)+\frac{1}{2}\right)\)
Áp dụng vào bài toán ta được
\(=\frac{101^2-101+0,5}{1^2-1+0,5}=20201\)\(1S=\frac{\left(2^2-2+0,5\right)\left(3^2-3+0,5\right)\left(4^2-4+0,5\right)\left(5^2-5+0,5\right)...\left(100^2-100+0,5\right)\left(101^2-101+0,5\right)}{\left(1^2-1+0,5\right)\left(2^2-2+0,5\right)\left(3^2-3+0,5\right)\left(4^2-4+0,5\right)...\left(99^2-99+0,5\right)\left(100^2-100+0,5\right)}\)
b/
\(\frac{3\left(x+y\right)}{3\sqrt{x\left(4x+5y\right)}+3\sqrt{y\left(4y+5x\right)}}\)
\(\ge\frac{3\left(x+y\right)}{\frac{9x+4x+5y}{2}+\frac{9y+4y+5x}{2}}\)
\(=\frac{1}{3}\)
Dấu = xảy ra khi x = y
Ta có \(P=\frac{x^2+y\left(x+y\right)}{x^2-y^2}:\frac{\left(x-y\right)\left(x^2+xy+y^2\right)}{x^4\left(x-y\right)-y^4\left(x-y\right)}\)
\(=\frac{x^2+xy+y^2}{x^2-y^2}:\frac{\left(x-y\right)\left(x^2+xy+y^2\right)}{\left(x-y\right)\left(x^4-y^4\right)}\)\(=\frac{x^2+xy+y^2}{x^2-y^2}:\frac{\left(x-y\right)\left(x^2+xy+y^2\right)}{\left(x-y\right)\left(x^2-y^2\right)\left(x^2+y^2\right)}\)
\(=\frac{x^2+xy+y^2}{x^2-y^2}.\frac{\left(x-y\right)\left(x^2-y^2\right)\left(x^2+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)\(=x^2+y^2=\left(x+y\right)^2-2xy\)
Thay \(x+y=5;xy=-\frac{1}{2}\Rightarrow P=5^2-2.\left(-\frac{1}{2}\right)=26\)
Vậy P=26
By Titu's Lemma we easy have:
\(D=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)
\(\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)
\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}\)
\(=\frac{17}{4}\)
Mk xin b2 nha!
\(P=\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}+4xy\)
\(\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)
\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)
\(\ge\frac{4}{1^2}+2+\frac{1}{1^2}=4+2+1=7\)
Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)
\(S=\left(\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}\right)=\left(\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}\right).\left(x+y+z\right)\) (do x+y+z=1 nên michf nhân vào kết quả sẽ ko bị thay đổi)
\(S=\frac{21}{16}+\left(\frac{x}{4y}+\frac{y}{16x}\right)+\left(\frac{x}{z}+\frac{z}{16x}\right)+\left(\frac{y}{z}+\frac{z}{4y}\right)\)
AD BĐT cô si,ta có:
\(S\ge\frac{21}{16}+2.\sqrt{\frac{x}{4y}.\frac{y}{16x}}+2\sqrt{\frac{x}{z}.\frac{z}{16x}}+2.\sqrt{\frac{y}{z}.\frac{z}{4y}}=\frac{21}{16}+\frac{1}{4}+\frac{1}{2}+1=\frac{49}{16}\)
dấu bằng xảy ra \(\Leftrightarrow\hept{\begin{cases}4x=2y=z\\x+y+z=1\\x;y;z>0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{7}\\y=\frac{2}{7}\\z=\frac{4}{7}\end{cases}}}\)
T=116x+14y+1zT=116x+14y+1z ; x + y + z = 1
⇒T=x+y+z16x+x+y+z4y+x+y+zz⇒T=x+y+z16x+x+y+z4y+x+y+zz
=116+y16x+z16x+x4y+14+z4y+xz+yz+1=116+y16x+z16x+x4y+14+z4y+xz+yz+1
=(116+14+1)+(y16x+x4y)+(z16x+xz)+(z4y+yz)=(116+14+1)+(y16x+x4y)+(z16x+xz)+(z4y+yz) (1)
x;y;z>0⇒y16x;x4y;z16x;xz;z4y;yz>0x;y;z>0⇒y16x;x4y;z16x;xz;z4y;yz>0
áp dụng bđt cô si :
y16x+x4y≥2√y16x⋅x4y=14y16x+x4y≥2y16x⋅x4y=14 (2)
z16x+xz≥2√z16x⋅xz=12z16x+xz≥2z16x⋅xz=12 (3)
x4y+yz≥2√z4y⋅yz=1x4y+yz≥2z4y⋅yz=1 (4)
(1)(2)(3)(4) ⇒T≥116+14+1+14+12+1⇒T≥116+14+1+14+12+1
⇒T≥4916⇒T≥4916
dấu "=" xảy ra khi \hept⎧⎪ ⎪⎨⎪ ⎪⎩y16x=x4yz16x=xzz4y=yz⇔\hept⎧⎨⎩4y2=16x2z2=16x2z2=4y2\hept{y16x=x4yz16x=xzz4y=yz⇔\hept{4y2=16x2z2=16x2z2=4y2
⇔\hept⎧⎨⎩y=2xz=4xz=2y⇔\hept{y=2xz=4xz=2y có x+y+z = 1
=> x + 2x + 4x = 1
=> x = 1/7
xong tìm ra y = 2/7 và z = 4/7
\(A=\frac{4}{x}+\frac{\frac{1}{4}}{y}\ge\frac{\left(2+\frac{1}{2}\right)^2}{x+y}=5\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x=1\\y=\frac{1}{4}\end{matrix}\right.\)
Lam ro ra mot chut dc k ban minh k hieu gi ca