K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 2 2020

\(A=\frac{4}{x}+\frac{\frac{1}{4}}{y}\ge\frac{\left(2+\frac{1}{2}\right)^2}{x+y}=5\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x=1\\y=\frac{1}{4}\end{matrix}\right.\)

15 tháng 2 2020

Lam ro ra mot chut dc k ban minh k hieu gi ca

<=>4(x+y)=5

ta có:

\(S+5=\frac{4}{x}+4x+\frac{1}{4y}+4y\ge2\sqrt{\frac{4}{x}.4x}+2\sqrt{\frac{1}{4y}.4y}=2.4+2=10\)

\(\Rightarrow S\ge5\)

Vậy Min S=5 khi x=1;y=1/4

18 tháng 4 2019

Bài này dùng Cô si ngược dấu:

Áp dụng BĐT Cô si:\(\frac{1}{x^2+1}=1-\frac{x^2}{x^2+1}\ge1-\frac{x^2}{2x}=1-\frac{x}{2}\)

Tương tự với ba BĐT còn lại và cộng theo vế ta được:\(VT\ge4-\frac{x+y+z+t}{2}=2\)

Dấu "=' xảy ra tại a = b = c = 1

Vậy min A = 2 khi và chỉ khi a = b = c = 1

18 tháng 4 2019

tth ngược dấu nhé 

\(A=\frac{1}{x^2+1}+\frac{1}{y^2+1}+\frac{1}{z^2+1}+\frac{1}{t^2+1}\)

\(\Leftrightarrow\)\(-A+4=\left(1-\frac{1}{x^2+1}\right)+\left(1-\frac{1}{y^2+1}\right)+\left(1-\frac{1}{z^2+1}\right)+\left(1-\frac{1}{t^2+1}\right)\)

\(\Leftrightarrow\)\(-A+4\ge1-\frac{x}{2}+1-\frac{y}{2}+1-\frac{z}{2}+1-\frac{t}{2}=4-\frac{x+y+z+t}{2}=2\)

\(\Leftrightarrow\)\(-A+4\ge2\)

\(\Leftrightarrow\)\(A\le2\)

DD
5 tháng 9 2021

\(A=3x+4y+\frac{5}{x}+\frac{9}{y}=\frac{5}{4}x+\frac{5}{x}+\frac{9}{4}y+\frac{9}{y}+\frac{7}{4}x+\frac{7}{4}y\)

\(\ge2\sqrt{\frac{5}{4}x.\frac{5}{x}}+2\sqrt{\frac{9}{4}y.\frac{9}{y}}+\frac{7}{4}.4\)

\(=5+9+7=21\)

Dấu \(=\)khi \(x=y=2\).

16 tháng 1 2020

\(S=x+y+\frac{3}{4x}+\frac{3}{4y}\)

\(=x+y+\frac{3}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)

\(\ge x+y+\frac{3}{x+y}\)

\(=\left(x+y+\frac{16}{9\left(x+y\right)}\right)+\frac{11}{9\left(x+y\right)}\)

\(\ge\frac{4}{3}+\frac{11}{9\cdot\frac{4}{3}}=\frac{43}{12}\)

Tại \(x=y=\frac{2}{3}\)

20 tháng 11 2016

a/ Ta có 

\(K^4+\frac{1}{4}=K^4+K^2+\frac{1}{4}-K^2=\left(K^2+\frac{1}{2}\right)^2-K^2=\left(K^2+K+\frac{1}{2}\right)\left(K^2-K+\frac{1}{2}\right)\)

Ta lại có 

\(K^2+K+\frac{1}{2}=\left(K+1\right)^2-\left(K+1\right)+\frac{1}{2}\)

\(\Rightarrow K^4+\frac{1}{4}=\left(K^2-K+\frac{1}{2}\right)\left(\left(K+1\right)^2-\left(K+1\right)+\frac{1}{2}\right)\)

Áp dụng vào bài toán ta được

\(=\frac{101^2-101+0,5}{1^2-1+0,5}=20201\)\(1S=\frac{\left(2^2-2+0,5\right)\left(3^2-3+0,5\right)\left(4^2-4+0,5\right)\left(5^2-5+0,5\right)...\left(100^2-100+0,5\right)\left(101^2-101+0,5\right)}{\left(1^2-1+0,5\right)\left(2^2-2+0,5\right)\left(3^2-3+0,5\right)\left(4^2-4+0,5\right)...\left(99^2-99+0,5\right)\left(100^2-100+0,5\right)}\)

20 tháng 11 2016

b/

\(\frac{3\left(x+y\right)}{3\sqrt{x\left(4x+5y\right)}+3\sqrt{y\left(4y+5x\right)}}\)

\(\ge\frac{3\left(x+y\right)}{\frac{9x+4x+5y}{2}+\frac{9y+4y+5x}{2}}\)

\(=\frac{1}{3}\)

Dấu = xảy ra khi x = y

24 tháng 7 2017

Ta có \(P=\frac{x^2+y\left(x+y\right)}{x^2-y^2}:\frac{\left(x-y\right)\left(x^2+xy+y^2\right)}{x^4\left(x-y\right)-y^4\left(x-y\right)}\)

\(=\frac{x^2+xy+y^2}{x^2-y^2}:\frac{\left(x-y\right)\left(x^2+xy+y^2\right)}{\left(x-y\right)\left(x^4-y^4\right)}\)\(=\frac{x^2+xy+y^2}{x^2-y^2}:\frac{\left(x-y\right)\left(x^2+xy+y^2\right)}{\left(x-y\right)\left(x^2-y^2\right)\left(x^2+y^2\right)}\)

\(=\frac{x^2+xy+y^2}{x^2-y^2}.\frac{\left(x-y\right)\left(x^2-y^2\right)\left(x^2+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)\(=x^2+y^2=\left(x+y\right)^2-2xy\)

Thay \(x+y=5;xy=-\frac{1}{2}\Rightarrow P=5^2-2.\left(-\frac{1}{2}\right)=26\)

Vậy P=26

21 tháng 7 2020

By Titu's Lemma we easy have:

\(D=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)

\(\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)

\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}\)

\(=\frac{17}{4}\)

21 tháng 7 2020

Mk xin b2 nha!

\(P=\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}+4xy\)

\(\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)

\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)

\(\ge\frac{4}{1^2}+2+\frac{1}{1^2}=4+2+1=7\)

Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)

\(S=\left(\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}\right)=\left(\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}\right).\left(x+y+z\right)\)   (do x+y+z=1 nên michf nhân vào kết quả sẽ ko bị  thay đổi)

\(S=\frac{21}{16}+\left(\frac{x}{4y}+\frac{y}{16x}\right)+\left(\frac{x}{z}+\frac{z}{16x}\right)+\left(\frac{y}{z}+\frac{z}{4y}\right)\)

AD BĐT cô si,ta có:

\(S\ge\frac{21}{16}+2.\sqrt{\frac{x}{4y}.\frac{y}{16x}}+2\sqrt{\frac{x}{z}.\frac{z}{16x}}+2.\sqrt{\frac{y}{z}.\frac{z}{4y}}=\frac{21}{16}+\frac{1}{4}+\frac{1}{2}+1=\frac{49}{16}\)

dấu bằng xảy ra \(\Leftrightarrow\hept{\begin{cases}4x=2y=z\\x+y+z=1\\x;y;z>0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{7}\\y=\frac{2}{7}\\z=\frac{4}{7}\end{cases}}}\)

11 tháng 3 2022

T=116x+14y+1zT=116x+14y+1z  ; x + y + z = 1

⇒T=x+y+z16x+x+y+z4y+x+y+zz⇒T=x+y+z16x+x+y+z4y+x+y+zz

=116+y16x+z16x+x4y+14+z4y+xz+yz+1=116+y16x+z16x+x4y+14+z4y+xz+yz+1

=(116+14+1)+(y16x+x4y)+(z16x+xz)+(z4y+yz)=(116+14+1)+(y16x+x4y)+(z16x+xz)+(z4y+yz)                    (1)

x;y;z>0⇒y16x;x4y;z16x;xz;z4y;yz>0x;y;z>0⇒y16x;x4y;z16x;xz;z4y;yz>0

áp dụng bđt cô si : 

y16x+x4y≥2√y16x⋅x4y=14y16x+x4y≥2y16x⋅x4y=14                             (2)

z16x+xz≥2√z16x⋅xz=12z16x+xz≥2z16x⋅xz=12                                 (3)

x4y+yz≥2√z4y⋅yz=1x4y+yz≥2z4y⋅yz=1                                        (4)

(1)(2)(3)(4) ⇒T≥116+14+1+14+12+1⇒T≥116+14+1+14+12+1

⇒T≥4916⇒T≥4916

dấu "=" xảy ra khi \hept⎧⎪ ⎪⎨⎪ ⎪⎩y16x=x4yz16x=xzz4y=yz⇔\hept⎧⎨⎩4y2=16x2z2=16x2z2=4y2\hept{y16x=x4yz16x=xzz4y=yz⇔\hept{4y2=16x2z2=16x2z2=4y2

⇔\hept⎧⎨⎩y=2xz=4xz=2y⇔\hept{y=2xz=4xz=2y có x+y+z = 1

=> x + 2x + 4x = 1

=> x = 1/7

xong tìm ra y = 2/7 và z = 4/7