Cho \(a^2+3ab^2=2014\) và \(b^2+3a^2b=2013\). Tính \(P=a^2-b^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^3-3ab^2=-2\)
\(\Rightarrow\left(a^3-3ab^2\right)^2=4\)
\(\Rightarrow a^6-6a^4b^2+9a^2b^4=4\left(1\right)\)
\(b^3-3a^2b=11\)
\(\Rightarrow\left(b^3-3a^2b\right)^2=121\)
\(\Rightarrow b^6-6a^2b^4+9a^4b^2=121\left(2\right)\)
\(\left(1\right)+\left(2\right)\Rightarrow a^6+3a^4b^2+3a^2b^4+b^6=125\)
\(\Rightarrow\left(a^2+b^2\right)^3=125\Rightarrow a^2+b^2=5\)
Ta có:\(a^3-3ab^2+b^3-3a^2b=15\)
\(\Rightarrow\left(a+b\right)\left(a^2-ab+b^2\right)-3ab\left(a+b\right)=15\)
\(\Rightarrow\left(a+b\right)\left(a^2-4ab+b^2\right)=15\)
Đến đây thì đơn giản rồi,bạn lập bảng xét ước nữa là xong
@Khong Biet trả lời sai rồi. đây có phải bài nghiệm nguyên đâu mà lập bảng xét dấu
Ta có (a3 - 3ab2)2 = a^6 - 6a^4b^2 + 9a^2b^4 = 4
(b^3 - 3a^2b)^2 = b^6 - 6a^2b^4 + 9a^4b^2 = 121
Cộng vế thep vế ta đựơc (a^2 + b^2)^3 = 125
=> a^2 + b^2 = 5
Thế vào 1 trong 2 cái đầu là giải ra
Ta có :\(\left(a^3+3ab^2\right)^2=a^6+6a^4b^2+9a^2b^4=2006^2\)
\(\left(b^3+3a^2b\right)^2=b^6+6a^2b^4+9a^4b^2=2005^2\)
\(\Rightarrow\left(a^3+3ab^2\right)^2-\left(b^3+3a^2b\right)^2=a^6-3a^4b^2+3a^2b-b^6\)
\(=2006^2-2005^2\)
Hay \(\left(a^2-b^2\right)^3=4011\)
Vậy \(P=a^2-b^2=^3\sqrt{4011}\)
Theo đề bài ta có:
\(a^3+3ab^2=2006\)
\(b^3+3a^2b=2005\)
\(\Rightarrow a^3+3ab^2-3a^2b-b^3=2006-2005\)
\(\Leftrightarrow a^3-3a^2b+3ab^2-b^3=1\)
\(\Leftrightarrow\left(a-b\right)^3=1\)
\(\Leftrightarrow a-b=1\)
Ta có:
\(P=a^2-b^2\)
\(P=\left(a-b\right)\left(a+b\right)\)
\(P=1\left(a+b\right)\)
VẬY \(P=a+b\)
Đề đúng (Hậu Giang 2013-2014) :Cho \(a^3+3ab^2=2014\)và \(b^3+3a^2b=2013\).Tính \(P=a^2-b^2\)
Ta có:
\(\left(a+b\right)^3=a^3+b^3+3a^2b+3ab^2=\left(a^3+3ab^2\right)+\left(b^3+3a^2b\right)=2014+2013=4027\)
\(\Rightarrow a+b=\sqrt[3]{4027}\)
\(\left(a-b\right)^3=a^3+3ab^2-\left(b^3+3a^2b\right)=2014-2013=1\)
\(\Rightarrow a-b=1\)
do đó \(P=a^2-b^2=\left(a+b\right)\left(a-b\right)=1.\sqrt[3]{4027}=\sqrt[3]{4027}\)