K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 12 2015

 

2mx -4m +10x -1 -y =0

2m(x-2) +(10x -1-y) =0

x =2 ; y =19  pt đúng với mọi m

=> h/s luôn qua điểm M(2;19) gọi K/c từ A đến d là AH

khoảng cách lờn nhất AH= AM   ( AH </ AM)

khi đó AH vuông góc AM 

+ gọi pt qua AM là  y =ax +b => a =4 ; b =11

=>(2m+10) . 4 =-1

2m = -1/4 -10 =- 41/4

m =-41/8

5 tháng 12 2015

khi đó am vuông góc với d nhé 

tick cho mk nha bạn

11 tháng 12 2021

1: Để hai đường thẳng cắt nhau thì 

2m+1<>m+2

hay m<>1

b: Phương trình hoành độ giao điểm là:

\(\dfrac{-1}{2}x^2-4x+16=0\)

\(\Leftrightarrow x^2\cdot\dfrac{1}{2}+4x-16=0\)

\(\Leftrightarrow x^2+8x-32=0\)

\(\Leftrightarrow\left(x+4\right)^2=48\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\sqrt{3}-4\\x=-4\sqrt{3}-4\end{matrix}\right.\)

Khi \(x=4\sqrt{3}-4\) thì \(y=\dfrac{-1}{2}\cdot\left(4\sqrt{3}-4\right)^2=-32+16\sqrt{3}\)

Khi \(x=-4\sqrt{3}-4\) thì \(y=\dfrac{-1}{2}\left(-4\sqrt{3}-4\right)^2=-32-16\sqrt{3}\)

b: Để hai đường song song thì

\(\left\{{}\begin{matrix}m-1=-1\\m+3< >1\end{matrix}\right.\Leftrightarrow m=0\)

22 tháng 5 2023

Để đường thẳng (d) đi qua điểm A(1, -5), ta cần giải hệ phương trình sau:

y = (2m + 3)x - (m^2 + 3m + 2) (1)

y = x^2 (2)

Thay x = 1 vào (1), ta có:

y = 2m + 3 - (m^2 + 3m + 2)

y = -m^2 - m + 1

Thay y từ (2) vào biểu thức trên, ta có:

x^2 = -m^2 - m + 1

x^2 + m^2 + m - 1 = 0

Để đường thẳng (d) đi qua điểm A(1, -5), phương trình (1) phải có nghiệm là y = -5 khi x = 1. Thay x = 1 và y = -5 vào (1), ta có:

-5 = 2m + 3 - (m^2 + 3m + 2)

m^2 + m - 10 = 0

(m + 2)(m - 5) = 0

Vậy, m = -2 hoặc m = 5.

Khi đó, phương trình của đường thẳng (d) sẽ là:

Khi m = -2: y = -x^2 - x - 1Khi m = 5: y = 13x - 24

Thay x=1 và y=-5 vào (d), ta được:

2m+3-m^2-3m-2=-5

=>-m^2-m+6=0

=>m^2+m-6=0

=>(m+3)(m-2)=0

=>m=2 hoặc m=-3

NV
14 tháng 3 2022

Gọi pt BC có dạng: \(y=ax+b\Rightarrow\left\{{}\begin{matrix}0=6a+b\\3=a.0+b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=3\\a=-\dfrac{1}{2}\end{matrix}\right.\)

\(\Rightarrow y=-\dfrac{1}{2}x+3\)

Pt hoành độ giao điểm BC và d:

\(-\dfrac{1}{2}x+3=mx-2m+2\)

\(\Leftrightarrow m\left(x-2\right)+\dfrac{1}{2}\left(x-2\right)=0\)

\(\Leftrightarrow\left(m+\dfrac{1}{2}\right)\left(x-2\right)=0\Rightarrow x=2\Rightarrow y=2\)

Vậy \(d_m\) luôn cắt BC tại điểm A cố định có tọa độ \(A\left(2;2\right)\)

b. Ta có: \(OB=\left|x_B\right|=6;OC=\left|y_C\right|=3\)

Từ A kẻ AH vuông góc trục hoành và AK vuông góc trục tung

\(\Rightarrow AH=\left|y_A\right|=2\) ; \(AK=\left|x_A\right|=2\)

\(S_{OAC}=\dfrac{1}{2}AK.OC=\dfrac{1}{2}.2.3=3\) ; \(S_{OAB}=\dfrac{1}{2}AH.OB=6\)

\(S_{OBC}=\dfrac{1}{2}OB.OC=9\)

Giả sử \(d_m\) cắt cạnh OC tại 1 điểm D nằm giữa O và C

\(\Rightarrow S_{ACD}=S_{OAC}-S_{OAD}< S_{OAC}=3< \dfrac{1}{2}S_{OBC}=9\) (ktm)

\(\Rightarrow d_m\) phải cắt cạnh OB tại 1 điểm D nào đó nằm giữa O và B

Khi đó: \(S_{ABD}=\dfrac{1}{2}S_{OBC}=\dfrac{9}{2}\)

Mà \(S_{ABD}=\dfrac{1}{2}AH.BD\Rightarrow BD=\dfrac{2S_{ABD}}{AH}=\dfrac{9}{2}\)

\(\Rightarrow x_B-x_D=\dfrac{9}{2}\Rightarrow x_D=6-\dfrac{9}{2}=\dfrac{3}{2}\)

\(\Rightarrow D\left(\dfrac{3}{2};0\right)\)

Do \(d_m\) qua D nên: \(\dfrac{3}{2}m-2m+2=0\Rightarrow m=4\)

NV
14 tháng 3 2022

undefined

7 tháng 4 2021

Câu này đề Hà Tĩnh 2016 - 2017.

Tham khảo:

Đáp án và đề thi HSG toán 10 sở GD&ĐT Hà Tĩnh 2016-2017