K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2020

Tìm giá trị nhỏ nhất của đa thức g(x)=16x4-72x2+90

 Ta có:

g(x)=16x4−72x2+90

=(4x2)2−2.4x2.9+92+9

=(4x2−9)2+9

Với mọi giá trị của x ta có: (4x2−9)2​≥0

⇒g(x)=(4x2−9)2+9≥9

Dấu "=" xảy ra khi ⇔(4x2-9)2=0⇔x=± \(\frac{3}{2}\)

Vậy GTNN của đa thức \(g\left(x\right)\)là 9 tại x=\(\pm\frac{3}{2}\)

14 tháng 2 2020

4x2 nghĩa là4x2nha mấy cái khác cũng v

do 16x4 \(\ge\)0

     72x2  \(\ge\)0

=> 16x^4 - 72x^2           \(\ge\)0

=> 16x^4 - 72x^2 + 90     \(\ge\)0

hay G(x) \(\ge\)90

GTNN của G(x) = 90

dấu = xảy ra <=> x = 0 

có j ko hiểu cứ nt hỏi mình nhé 

14 tháng 4 2017

a) Giải:

\(f\left(x\right)=\left(m^2-25\right)x^4+\left(20+4\right)x^3+7x^2-9\) là đa thức bậc \(3\) theo biến \(x\) khi:

\(\left\{{}\begin{matrix}m^2-25=0\\20+4m\ne0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m=\pm5\\m\ne-5\end{matrix}\right.\)

Vậy \(m=5\) thì \(f\left(x\right)\) là đa thức bậc \(3\) theo biến \(x\)

b) Ta có:

\(g\left(x\right)=16x^4-72x^2+90\)

\(=\left(4x^2\right)^2-2.4x^2.9+9^2+9\)

\(=\left(4x^2-9\right)^2+9\)

Với mọi giá trị của \(x\) ta có: \(\left(4x^2-9\right)^2\ge0\)

\(\Rightarrow g\left(x\right)=\left(4x^2-9\right)^2+9\ge9\)

Dấu "=" xảy ra khi \(\Leftrightarrow\left(4x^2-9\right)^2=0\Leftrightarrow x=\pm\dfrac{3}{2}\)

Vậy GTNN của đa thức \(g\left(x\right)\)\(9\) tại \(x=\pm\dfrac{3}{2}\)

27 tháng 4 2019

b sai rồi

11 tháng 2 2017

Xét hàm số f(x) =  x 3  + 3 x 2  − 72x + 90 trên đoạn [-5;5]

f′(x) =3 x 2  + 6x − 72;

f′(x) = 0 Giải sách bài tập Toán 12 | Giải sbt Toán 12

f(−5) = 400; f(5) = −70; f(4) = −86

Ngoài ra, f(x) liên tục trên đoạn [-5;5] và f(−5).f(5) < 0 nên tồn tại x 0   ∈ (−5;5) sao cho f( x 0 ) = 0

Ta có g(x) = |f(x)| ≤ 0 và g( x 0 ) = |f( x 0 )| = 0;

g(−5) = |400| = 400

g(5) = |−70| = 70; g(4) = |f(4)| = |−86| = 86

Vậy min g(x) = g( x 0 ) = 0; max g(x) = g(−5) = 400

2 tháng 7 2018

+) \(E=x^2-6x+9+x^2-22x+121=2x^2-28x+130\)

\(\Rightarrow2E=4x^2-56x+242=\left(4x^2-56x+196\right)+46=\left(2x-14\right)^2+46\)

Vì \(\left(2x-14\right)^2\ge0\Rightarrow2E=\left(2x-14\right)^2+46\ge46\Rightarrow E\ge23\)

Dấu "=" xảy ra khi x=7 

Vậy Emin=23 khi x=7

+) \(F=\frac{-2}{x^2-2x+5}=\frac{-2}{x^2-2x+1+4}=\frac{-2}{\left(x-1\right)^2+4}\)

Vì \(\left(x-1\right)^2\ge0\Rightarrow\left(x-1\right)^2+4\ge4\Rightarrow F=\frac{-2}{\left(x-1\right)^2+4}\le-\frac{2}{4}=-\frac{1}{2}\)

Dấu "=" xảy ra khi x=1

Vậy Fmin=-1/2 khi x=1

+) \(G=\left(x+1\right)\left(x-2\right)\left(x-3\right)\left(x-6\right)=\left(x^2-6x+x-6\right)\left(x^2-3x-2x+6\right)=\left(x^2-5x-6\right)\left(x^2-5x+6\right)\)

Đặt x2-5x=t, ta được:

\(G=\left(t-6\right)\left(t+6\right)=t^2-36=\left(x^2-5x\right)^2-36\)

Vì \(\left(x^2-5x\right)^2\ge0\Rightarrow G=\left(x^2-5x\right)^2-36\ge36\)

Dấu "=" xảy ra khi x=0 hoặc x=5

Vậy Gmin=36 khi x=0 hoặc x=5

1. Cho số nguyên dương x, tìm giá trị nhỏ nhất của biểu thức:\(P=\dfrac{\left(x+1\right)^6}{\left(x^3+7\right)\left(x^3+3x^2+4\right)}\). 2. Cho \(a,b\ge0\) thỏa mãn \(a-\sqrt{a}=\sqrt{b}-b\), tìm giá trị nhỏ nhất của biểu thức:\(M=\left(a-b\right)\left(a+b-1\right)\). 3. Cho \(\Delta OEF\) vuông tại O có \(OE=a\), \(OF=b\), \(EF=c\) và \(\widehat{OEF}=\alpha\), \(\widehat{OFE}=\beta\).1)i, Chứng minh rằng không có giá trị nào của a,b,c để biểu...
Đọc tiếp

1. Cho số nguyên dương x, tìm giá trị nhỏ nhất của biểu thức:

\(P=\dfrac{\left(x+1\right)^6}{\left(x^3+7\right)\left(x^3+3x^2+4\right)}\).

 

2. Cho \(a,b\ge0\) thỏa mãn \(a-\sqrt{a}=\sqrt{b}-b\), tìm giá trị nhỏ nhất của biểu thức:

\(M=\left(a-b\right)\left(a+b-1\right)\).

 

3. Cho \(\Delta OEF\) vuông tại O có \(OE=a\)\(OF=b\)\(EF=c\) và \(\widehat{OEF}=\alpha\)\(\widehat{OFE}=\beta\).

1)

i, Chứng minh rằng không có giá trị nào của a,b,c để biểu thức \(A=\dfrac{a+b}{c}+\dfrac{c}{a+b}\) nhận giá trị nguyên.

ii, Giả sử \(c\sqrt{ab}=\sqrt{2}\) , tìm giá trị nhỏ nhất của biểu thức \(B=\left(a+b\right)^2\).

2)

i, Tìm giá trị nhỏ nhất của biểu thức \(C=\dfrac{1}{\sin^2\alpha}+\dfrac{1}{\sin^2\beta}-2\left(\sin^2\alpha+\sin^2\beta\right)+\dfrac{\sin\alpha}{\tan\alpha}-\dfrac{\tan\alpha+\cos\beta}{\cot\beta}\) .

ii, Tìm điều kiện của \(\Delta OEF\) khi \(2\cos^2\beta-\cot^2\alpha+\dfrac{1}{\sin^2\alpha}=2\).

0
8 tháng 11 2021

TK: Tìm Min (x^4 + 1) (y^4 + 1) với x + y = căn10 ; x , y > 0 - Thanh Truc