\(\frac{x^2+x+4}{2}+\frac{x^2+x+7}{3}=\frac{x^2+x+13}{5}+\frac{x^2+x+16}{6}\)
Giúp mình với!!!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x\left(x-1\right)\left(x+1\right)\left(x+2\right)=24\)
<=> \(\left[x\left(x+1\right)\right]\left[\left(x-1\right)\left(x+2\right)\right]-24=0\)
<=> \(\left(x^2+x\right)\left(x^2+2x-x-2\right)-24=0\)
<=> \(\left(x^2+x\right)\left(x^2+x-2\right)-24=0\)
Đặt t = x2 + x
<=> t(t - 2) - 24 = 0
<=> t2 - 2t - 24 = 0
<=> t2 - 6t + 4t - 24 = 0
<=> (t + 4)(t - 6) = 0
<=> \(\orbr{\begin{cases}x^2+x+4=0\\x^2+x-6=0\end{cases}}\)
<=> \(\orbr{\begin{cases}\left(x^2+x+\frac{1}{4}\right)+\frac{15}{4}=0\\x^2+3x-2x-6=0\end{cases}}\)
<=> \(\orbr{\begin{cases}\left(x+\frac{1}{2}\right)^2+\frac{15}{4}=0\left(ktm\right)\\\left(x-2\right)\left(x+3\right)=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x-2=0\\x+3=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=2\\x=-3\end{cases}}\)
Vậy S = {2; -3}
(lưu ý: thay "ktm" thành vô lý và giải thích thêm)
\(\left(x+3\right)^4+\left(x+5\right)^4=2\)
<=> (x + 4 - 1)4 + (x + 4 + 1)4 - 2 = 0
Đặt y = x + 4
<=> (y - 1)4 + (y + 1)4 - 2 = 0
<=> y4 - 4y3 + 6y2 - 4y + 1 + y4 + 4y3 + 6y2 + 4y + 1 - 2 = 0
<=> 2y4 + 12y2 = 0
<=> 2y2(y2 + 6) = 0
<=> \(\orbr{\begin{cases}y^2=0\\y^2+6=0\left(ktm\right)\end{cases}}\)
<=> y = 0
<=> x + 4 = 0
<=> x = -4
Vậy S = {-4}
\(\frac{x^2+x+4}{2}+\frac{x^2+x+7}{3}=\frac{x^2+x+13}{5}+\frac{x^2+x+16}{6}\)
<=> \(\frac{x^2+x+4}{2}-3+\frac{x^2+x+7}{3}-3=\frac{x^2+x+13}{5}-3+\frac{x^2+x+16}{6}-3\)
<=> \(\frac{x^2+x+4-6}{2}+\frac{x^2+x+7-9}{3}=\frac{x^2+x+13-15}{5}+\frac{x^2+x+16-18}{6}\)
<=> \(\frac{x^2+x-2}{2}+\frac{x^2+x-2}{3}=\frac{x^2+x-2}{5}+\frac{x^2+x-2}{6}\)
<=> \(\left(x^2+2x-x-2\right)\left(\frac{1}{2}+\frac{1}{3}-\frac{1}{5}-\frac{1}{6}\right)=0\)
<=> (x + 2)(x - 1) = 0 (do \(\frac{1}{2}+\frac{1}{3}-\frac{1}{5}-\frac{1}{6}\ne0\))
<=> \(\orbr{\begin{cases}x+2=0\\x-1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-2\\x=1\end{cases}}\)
Vậy S = {-2; 1}
câu cuối: + 3 vào sau các phân số của pt như trên
a.2x#+_2 . quy đồng khử mẫu tchung : (x+2)(x+1)+(x-1)(x-2)--->2x^2 + 4=2(x^2+2). --> s={x thuộc R/ X#+_2}
a) ĐKXĐ \(\hept{\begin{cases}x\ne-2\\x\ne2\end{cases}}\)
\(\Rightarrow\left(x+1\right)\left(x+2\right)+\left(x-1\right)\left(x-2\right)-2x\left(x^2+2\right)=0\)
\(\Leftrightarrow x^2+3x+2+x^2-3x+2-2x^2-4=0\)
\(\Leftrightarrow0x=0\)(vô số nghiệm)
nghiệm x thỏa mãn phương trình S \(\in\)R với \(\hept{\begin{cases}x\ne-2\\x\ne2\end{cases}}\)
b) ĐKXĐ \(\hept{\begin{cases}x\ne0\\x\ne2\end{cases}}\)
\(\Rightarrow\frac{5-x}{4x\left(x-2\right)}-\frac{1}{8\left(x-2\right)}=\frac{1}{2x\left(x-2\right)}-\frac{7}{8x}\)
\(\Rightarrow2\left(5-x\right)-x-4\left(x-1\right)+7\left(x-2\right)=0\)
\(\Leftrightarrow10-2x-x-4x+4+7x-14=0\)
\(\Leftrightarrow0x=0\)(phương trìh vô số nghiệm)
nghiệm x thỏa mãn phương trình S \(\in\)R với \(\hept{\begin{cases}x\ne0\\x\ne2\end{cases}}\)
\(\Leftrightarrow\frac{x^2+4}{8}-1+\frac{x^2+3}{7}-1+\frac{x^2+2}{6}-1=\frac{x^2+1}{5}-1+\frac{x^2}{4}-1+\frac{x^2-1}{3}-1\)
\(\Leftrightarrow\frac{x^2-4}{8}+\frac{x^2-4}{7}+\frac{x^2-4}{6}-\frac{x^2-4}{5}-\frac{x^2-4}{4}-\frac{x^2-4}{3}=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(\frac{1}{8}+\frac{1}{7}+\frac{1}{6}+\frac{1}{5}+\frac{1}{4}+\frac{1}{3}\right)\)
\(\Leftrightarrow x^2-4=0\Leftrightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)
a)\(-\frac{2}{5}+\frac{2}{3}x+\frac{1}{6}x=-\frac{4}{5}\Leftrightarrow\frac{5}{6}x=-\frac{2}{5}\Leftrightarrow x=-\frac{12}{25}\)
Vậy nghiệm là x = -12/25
b)\(\frac{3}{2}x-\frac{2}{5}-\frac{2}{3}x=-\frac{4}{15}\Leftrightarrow\frac{5}{6}x=\frac{2}{15}\Leftrightarrow x=\frac{4}{25}\)
Vậy nghiệm là x = 4/25
c)\(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)
\(\Leftrightarrow x+1=0\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\ne0\right)\)\(\Leftrightarrow x=-1\)
Vậy nghiệm là x = -1
f: =>35x-5=96-6x
=>41x=101
hay x=101/41
g: =>3(x-3)=90-5(1-2x)
=>3x-9=90-5+10x
=>3x-9=10x+85
=>-7x=94
hay x=-94/7
h.3x - 2/6 - 5 = 3 - 2(x + 7)/4
<=> 3x - 2 - 30/6 = 3 - 2(x + 7)/4
<=> 3x - 32/6 = 3 - 2x - 14/4
<=> 3x - 32/6 = -2x - 11/4
<=> 6x - 64/12 = -6x - 33/12
<=> 6x - 64 = -6x - 33 <=> 12x = 31 <=> x = 31/12
a)\(0,2:1\frac{1}{5}=\frac{2}{3}:\left(6.x+7\right)\)
\(\frac{2}{3}:\left(6.x+7\right)=0,2:1\frac{1}{5}\)
\(\frac{2}{3}:\left(6.x+7\right)=0,2:\frac{6}{5}\)
\(\frac{2}{3}:\left(6.x+7\right)=\frac{1}{6}\)
\(6.x+7=\frac{2}{3}:\frac{1}{6}\)
\(6.x+7=4\)
\(6.x=4-7\)
\(6.x=-3\)
\(x=-3:6\)
\(x=-0,5\)
Vậy x=-0,5 hay \(\frac{-1}{2}\)
d)\(\frac{x}{y}=\frac{2}{3};x.y=96\)
Từ \(\frac{x}{y}=\frac{2}{3}\)suy ra \(\frac{x}{3}=\frac{y}{2}\)
Đặt k=\(\frac{x}{3}=\frac{y}{2}\)
\(\Rightarrow x=3.k;y=2.k\)
Vì \(x.y=96\)nên \(2k.3k=96\)
\(\Rightarrow6.k^2=96\)
\(\Rightarrow k^2=96:6\)
\(\Rightarrow k^2=16\)
\(\Rightarrow k=4\)hoặc\(k=-4\)
+)Với \(k=4\)thì \(x=2\);\(y=3\)
+)Với \(k=-4\)thì \(x=-2\);\(y=-3\)
Vậy \(x=2;y=3\)hoặc \(x=-2;y=-3\)
e) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)và \(x.y.z=810\)
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)
\(\Rightarrow x=2k;y=3k;z=5k\)
Vì \(x.y.z=810\)nên \(2k.3k.5k=810\)
\(\Rightarrow30.k^3=810\)
\(\Rightarrow k^3=810:30\)
\(\Rightarrow k^3=27\)
\(\Rightarrow k=3\)
Với \(k=3\)thì \(x=6\); \(y=9\); \(z=15\)
Vậy \(x=6\); \(y=9\); \(z=15\)
Mk chỉ làm đc vậy thui bn à! Xin lỗi thật nhiều nha
1. \(\frac{7x-1}{6}+2x=\frac{16-x}{5}\)
\(\Leftrightarrow5\left(7x-1\right)+60x=6\left(16-x\right)\)
\(\Leftrightarrow35x-5+60x=96-6x\)
\(\Leftrightarrow95x-5=96-6x\)
\(\Leftrightarrow95x+6x=96+5\)
\(\Leftrightarrow101x=101\)
\(\Leftrightarrow x=1\)
2. \(\frac{10x+3}{12}=1+\frac{6+8x}{9}\)
\(\Leftrightarrow3\left(10x+3\right)=36+4\left(6+8x\right)\)
\(\Leftrightarrow30x+9=36+24+32x\)
\(\Leftrightarrow30x+9=32x+60\)
\(\Leftrightarrow30x-32x=60-9\)
\(\Leftrightarrow-2x=51\)
\(\Leftrightarrow x=-\frac{51}{2}\)
3. \(\frac{8x-3}{4}-\frac{3x-2}{2}=\frac{2x-1}{2}+\frac{x+3}{4}\)
\(\Leftrightarrow8x-3-2\left(3x-2\right)=2\left(2x-1\right)+x+3\)
\(\Leftrightarrow8x-3-6x+4=4x-2+x+3\)
\(\Leftrightarrow2x+1=5x+1\)
\(\Leftrightarrow2x=5x\)
\(\Leftrightarrow x=0\)
4) \(\frac{3\left(3-x\right)}{8}+\frac{2\left(5-x\right)}{3}=\frac{1-x}{2}-2\)
=> \(\frac{9-3x}{8}+\frac{10-2x}{3}=\frac{1-x}{2}-\frac{2}{1}\)
=> \(\frac{3\left(9-3x\right)}{24}+\frac{8\left(10-2x\right)}{24}=\frac{12\left(1-x\right)}{24}-\frac{48}{24}\)
=> \(\frac{27-9x}{24}+\frac{80-16x}{24}=\frac{12-12x}{24}-\frac{48}{24}\)
=> \(\frac{27-9x+80-16x}{24}=\frac{12-12x-48}{24}\)
=> 27 - 9x + 80 - 16x = 12 - 12x - 48
=> 27 - 9x + 80 - 16x - 12 + 12x + 48 = 0
=> (27 + 80 - 12 + 48) + (-9x - 16x + 12x) = 0
=> 143 - 13x = 0
=> 13x = 143
=> x = 11
5) \(\frac{2\left(x-3\right)}{7}+\frac{x-5}{3}-\frac{13x+4}{21}=0\)
=> \(\frac{2x-6}{7}+\frac{x-5}{3}-\frac{13x+4}{21}=0\)
=> \(\frac{3\left(2x-6\right)}{21}+\frac{7\left(x-5\right)}{21}-\frac{13x+4}{21}=0\)
=> \(\frac{6x-18}{21}+\frac{7x-35}{21}-\frac{13x+4}{21}=0\)
=> \(\frac{6x-18+7x-35-13x-4}{21}=0\)
=> 6x - 18 + 7x - 35 - 13x - 4 = 0
=> (6x + 7x - 13x) + (-18 - 35 - 4) = 0
=> -57 = 0(vô nghiệm)
6) \(\frac{6x+5}{2}-\left(2x+\frac{2x+1}{2}\right)=\frac{10x+3}{4}\)
=> \(\frac{6x+5}{2}-\frac{10x+3}{4}=2x+\frac{2x+1}{2}\)
=> \(\frac{2\left(6x+5\right)}{4}-\frac{10x+3}{4}=\frac{8x}{4}+\frac{2\left(2x+1\right)}{4}\)
=> \(\frac{12x+10}{4}-\frac{10x+3}{4}=\frac{8x}{4}+\frac{4x+2}{4}\)
=> \(\frac{12x+10-\left(10x+3\right)}{4}=\frac{8x+4x+2}{4}\)
=> \(\frac{12x+10-10x-3}{4}=\frac{12x+2}{4}\)
=> \(12x+10-10x-3=12x+2\)
=> \(2x+10-3=12x+2\)
=> 2x + 10 - 3 - 12x - 2 = 0
=> (2x - 12x) + (10 - 3 - 2) = 0
=> -10x + 5 = 0
=> -10x = -5
=> x = 1/2
7) \(\frac{2x-1}{5}-\frac{x-2}{3}-\frac{x+7}{15}=0\)
=> \(\frac{3\left(2x-1\right)}{15}-\frac{5\left(x-2\right)}{15}-\frac{x+7}{15}=0\)
=> \(\frac{6x-3}{15}-\frac{5x-10}{15}-\frac{x+7}{15}=0\)
=> \(\frac{6x-3-\left(5x-10\right)-\left(x+7\right)}{15}=0\)
=> 6x - 3 - 5x + 10 - x - 7 = 0
=> (6x - 5x - x) + (-3 + 10 - 7) = 0
=> 0x + 0 = 0
=> 0x = 0
=> x tùy ý
Bài 8 tự làm nhé
Đặt \(x^2+x+10=u\)
Phương trình trở thành: \(\frac{u-6}{2}+\frac{u-3}{3}=\frac{u+3}{5}+\frac{u+6}{6}\)
\(\Rightarrow\frac{u}{2}-3+\frac{u}{3}-1=\frac{u}{5}+\frac{3}{5}+\frac{u}{6}+1\)
\(\Rightarrow\frac{u}{2}+\frac{u}{3}-\frac{u}{5}-\frac{u}{6}=3+1+1+\frac{3}{5}\)
\(\Rightarrow u\left(\frac{1}{2}+\frac{1}{3}-\frac{1}{5}-\frac{1}{6}\right)=\frac{28}{5}\)
\(\Rightarrow u.\frac{7}{15}=\frac{28}{5}\Rightarrow u=12\)
Lúc đó \(x^2+x+10=12\)
\(x^2+x-2=0\)
Ta có \(\Delta=1^2+4.2=9,\sqrt{\Delta}=3\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{-1+3}{2}=1\\x=\frac{-1-3}{2}=-2\end{cases}}\)