K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2020

\(A=4x^2+3y^2-6xy+6x-12y+20\)

\(A=3\left(x^2-2xy+y^2\right)+6x-12y+x^2+20\)

\(A=3\left[\left(x-y\right)^2+4\left(x-y\right)+4\right]+\left(x^2-6x+9\right)-1\)

\(A=3\left(x-y+2\right)^2+\left(x-3\right)^2-1\ge-1\)

Dấu bằng xảy ra tại x=3;y=5

22 tháng 10 2017

yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

26 tháng 12 2021

a: \(A=4x^2-4x+1-4=\left(2x-1\right)^2-4>=-4\forall x\)

Dấu '=' xảy ra khi x=1/2

15 tháng 10 2016

\(a,x^2-4x+4y^2+12y+13\)

Ta có : 

\(A=x^2-4x+4y^2+12y+13\)

\(=\left(x^2-4x+2^2\right)+\left(\left(2y\right)^2+12y+3^2\right)\)

\(=\left(x-2\right)^2+\left(2y+3\right)^2\)

Vì \(\left(x-2\right)^2\ge0\)\(\forall x\in R\)

    \(\left(2y+3\right)^2\ge0\) \(\forall x\in R\)

\(\Rightarrow A=x^2-4x+4y^2+12y+13\ge0\) \(\forall x\in R\)

Dấu '=' xảy ra khi và chỉ khi \(\hept{\begin{cases}x-2=0\\2y+3=0\end{cases}}\)  \(\Leftrightarrow\hept{\begin{cases}x=2\\y=-\frac{3}{2}\end{cases}}\)

Vậy \(min_A=0\) khi \(x=1\) và \(y=-\frac{3}{2}\) 

\(A=4x^2-6x\left(x-y\right)+3y^2-12y+20\)

\(A=\left(2x\right)^2-2.2x.\frac{3}{2}y+\left(\frac{3}{2}y\right)^2-\frac{9}{4}y^2+3y^2-12y+20\)

\(A=\left(2x-\frac{3}{4}y\right)^2+\frac{3}{4}y^2-12y+432-432+20\)

\(A=\left(2x-\frac{3}{4}y\right)^2+3\left(\frac{1}{4}y^2-2.\frac{1}{2}.12+12^2\right)-432+20\)

\(\Rightarrow A=\left(2x-\frac{3}{4}y\right)^2+3\left(\frac{1}{2}y-12\right)^2-412\)

Ta có:\(\hept{\begin{cases}\left(2x-\frac{3}{4}y\right)^2\ge0\\\left(\frac{1}{2}y-12\right)^2\ge0\Rightarrow3\left(\frac{1}{2}y-12\right)^2\ge0\end{cases}}\)

\(\Rightarrow\left(2x-\frac{3}{4}y\right)^2+3\left(\frac{1}{2}y-12\right)^2-412\ge-412\)

\(\Rightarrow A_{min}=-412\)đạt được khi

i\(\hept{\begin{cases}\left(2x-\frac{3}{4}y\right)^2=0\\\left(\frac{1}{2}y-12\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}2x-\frac{3}{4}y=0\\\frac{1}{2}y-12=0\end{cases}\Leftrightarrow}\hept{\begin{cases}2x=\frac{3}{4}y\\\frac{1}{2}y=12\end{cases}\Leftrightarrow}\hept{\begin{cases}x=9\\y=24\end{cases}}}\)

6 tháng 8 2017

Ta có : E = (x - 1) (x + 2)(x + 3)(x + 6)

=> E = [(x - 1)(x + 6)][(x + 2)(x + 3)]

=> E = (x2 + 5x - 6)(x2 + 5x + 6)

=> E = (x2 + 5x)2 - 62

=> E = (x2 + 5x)2 - 36

Mà : (x2 + 5x)2 \(\ge0\forall x\)

Nên : (x2 + 5x)2 - 36 \(\ge-36\forall x\)

Vậy GTNN của biểu thức là 36 tại x2 + 5x = 0 => x(x + 5) = 0 => x = 0 ; -5 

21 tháng 7 2017

anh ko biết nha em yêu của anh

23 tháng 7 2017

\(A=2x^2+9y^2-6xy-6x-12y+2046\)

\(=\left[\left(x^2-6xy+9y^2\right)+\left(4x-12y\right)+4\right]-4+\left(x^2-10x+25\right)-25+2046\)

\(=\left[\left(x-3y\right)^2+4\left(x-3y\right)+4\right]+\left(x-5\right)^2-4-25+2046\)

\(=\left(x-3y+2\right)^2+\left(x-5\right)^2+2017\ge2017\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-3y+2=0\\x-5=0\end{cases}\Leftrightarrow\hept{\begin{cases}y=\frac{7}{3}\\x=5\end{cases}}}\)

Vậy \(A_{min}=2017\) tại \(x=5;y=\frac{7}{3}\)