Cho số có 2 chữ số biết rằng nếu viết thêm vào bên trái và bên phải một chữ số 3 thì ta được số mới gấp 153 lần số phải tìm . Tính tổng số mới và số ban đầu?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số có 2 chữ số cần tìm là \(\overline{ab}\left(a\ne0,a;b\in N\right)\)
Khi viết thêm một chữ số 2 vào bên trái và 1 chữ số 2 vào bên phải thì được số mới \(\overline{2ab2}\)
Mà số mới hơn số cũ 135 lần nên ta có phương trình :
\(\overline{2ab2}\div\overline{ab}=135\)
\(\Leftrightarrow135\times\overline{ab}=\overline{2ab2}\)
\(\Leftrightarrow135\times\left(10a+b\right)=2000+100a+10b+2\)
\(\Leftrightarrow1350a+135b=2002+100a+10b\)
\(\Leftrightarrow1250a+125b=2002\)
\(\Leftrightarrow125\times\left(10a+b\right)=2002\)
\(\Leftrightarrow\overline{ab}=\frac{2002}{125}\)
\(\Rightarrow\) Sai đề.
Gọi số có hai chữ số cần tìm là
Khi viết thêm một chữ số 2 vào bên trái và một chữ số 2 vào bên phải thì ta được số mới là
Theo đề bài, số mới gấp 153 lần số ban đầu nên ta có phương trình :
Vậy số cần tìm là 14.
* Lưu ý : Ở bài toán này ta coi cả số là một ẩn.
Các bạn có thể đặt ẩn đơn giản là x hoặc A … nhưng khi phân tích số thì các bạn cần lưu ý nó là số có 4 chữ số nên , nếu bạn phân tích thành là sai.
Đáp án B
Gọi số có hai chữ số cần tìm là
Khi viết thêm một chữ số 2 vào bên trái và một chữ số 2 vào bên phải thì ta được số mới là
Theo đề bài, số mới gấp 153 lần số ban đầu nên ta có phương trình :
Vậy số cần tìm là 14.
* Lưu ý : Ở bài toán này ta coi cả số là một ẩn.
Các bạn có thể đặt ẩn đơn giản là x hoặc A … nhưng khi phân tích số thì các bạn cần lưu ý nó là số có 4 chữ số nên , nếu bạn phân tích thành là sai.
Gọi số tự nhiên có hai chữ số ban đầu là x. (10 ≤ x ≤ 99; nguyên)
Vậy số tự nhiên cần tìm: 14
Gọi số tự nhiên có hai chữ số cần tìm là \(\overline{ab}\) ( \(\overline{ab}\)\(\in N\)*, 10\(\le\overline{ab}\le99\))
=> Số mới là \(\overline{2ab2}\)
Theo đề ta có:
\(\dfrac{\overline{2ab2}}{\overline{ab}}=153\)
<=> 153.\(\overline{ab}\)=\(\overline{2ab2}\)
<=>153.\(\overline{ab}\)=2000+\(\overline{ab}\).10+2
<=> 143\(\overline{ab}\)=2002
<=> \(\overline{ab}\)=14 (thỏa mãn điều kiện)
Vậy số tự nhiên có hai chữ số cần tìm là 14
Số phải tìm có dạng \(\overline{ab}\).
\(\overline{3ab3}=153\times\overline{ab}\Leftrightarrow3003+10\times\overline{ab}=153\times\overline{ab}\)
\(\Leftrightarrow3003=143\times\overline{ab}\)
\(\Leftrightarrow\overline{ab}=3003\div143=21\)
Đáp số: \(21\).
Gọi số đó là ab
sau khi thêm một chữ số 2 vào bên phải và 2 vào bên trái ta được số mới:
2ab2
Vì số mới gấp hai 153 số cũ nên ta có:
2ab2:ab=153
<=>2ab2=153.ab
<=>2000+100a+10b+2=153(10a+b)
<=>2002+100a+10b=1530a+153b
<=>2002=1530a-100a+153b-10b
<=>2002=1430a+143b
<=>2002=143(10a+b)
<=>10a+b=2002:143
<=>10a+b=14
=>ab=14
Gọi số đó là ab
sau khi thêm một chữ số 2 vào bên phải và 2 vào bên trái ta được số mới: 2ab2
Vì số mới gấp hai 153 số cũ nên ta có:
2ab2:ab=153
<=>2ab2=153.ab
<=>2000+100a+10b+2=153(10a+b)
<=>2002+100a+10b=1530a+153b
<=>2002=1530a-100a+153b-10b
<=>2002=1430a+143b <=>2002=143(10a+b)
<=>10a+b=2002:143
<=>10a+b=14
=>ab=14
Số cần tìm có dạng 10xa+b (1=<a=<9; 0=<b=<9 và a,b thuộc N)
Nếu viết thêm vào bên trái và bên phải một chữ số 3 thì ta được số mới bằng :
3000+100xa+10xb+3=3003+100xa+10xb
Mà số mới gấp 153 lần số ban đầu nên:
3003+100xa+10xb=153x(10xa+b)
<=>3003+100xa+10xb=1530xa+153xb
<=>1430xa+143xb=3003
<=>143(10a+b)=3003
<=>10a+b=21
=> số ban đầu là 21
=> số mới là 3213
Tổng số mới và số ban đầu là:
21+3213=3234
Đáp số : 3234
Tìm hai số biết rằng nếu thêm vào bên phải số bé chữ số 2 thì được tổng của hai số là 167