Cho các số thực dương x,y. Chứng minh rằng: \(\frac{1}{\left(1+x\right)^2}+\frac{1}{\left(1+y\right)^2}\ge\frac{1}{1+xy}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do x, y >0 nên bất đẳng thức tương đương với :
\(\left[\left(1+x\right)^2+\left(1+y\right)^2\right]\left(1+xy\right)\ge\left(1+x\right)^2\left(1+y\right)^2\)
\(\Leftrightarrow\left(2+2x+2y+x^2+y^2\right)\left(1+xy\right)\ge\left(1+2x+x^2\right)\left(1+2y+y^2\right)\)
\(\Leftrightarrow xy\left(x-y\right)^2+\left(xy-1\right)^2\ge0\)
Bất đẳng thức này luôn đúng
Dấu bằng xảy ra khi x=y=1
Áp dụng BĐT : ( a + b + c )2 \(\ge\)3 ( ab + bc + ac )
Ta có : \(\frac{\left(x+y+1\right)^2}{xy+y+x}\ge\frac{3\left(xy+y+x\right)}{xy+y+x}=3\)
đặt \(\frac{\left(x+y+1\right)^2}{xy+y+x}=A\)
ta có : \(A+\frac{1}{A}=\frac{8A}{9}+\frac{A}{9}+\frac{1}{A}\ge\frac{8.3}{9}+2\sqrt{\frac{A}{9}.\frac{1}{A}}=\frac{8}{3}+\frac{2}{3}=\frac{10}{3}\)
Ta có \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
=> \(a^2+b^2+c^2\ge ab+bc+ac\)=> \(\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\)
Áp dụng ta được
\(\left(x+y+1\right)^2\ge3\left(x+y+xy\right)\)=> \(\frac{\left(x+y+1\right)^2}{xy+y+x}\ge3\)
Đặt \(\frac{\left(x+y+1\right)^2}{x+y+xy}=t\)(\(t\ge3\))
Khi đó
\(VT=t+\frac{1}{t}=\left(\frac{t}{9}+\frac{1}{t}\right)+\frac{8}{9}t\ge\frac{2}{3}+\frac{8}{9}.3=\frac{10}{3}\)
Dấu bằng xảy ra khi \(\hept{\begin{cases}t=3\\x=y=1\end{cases}}\)=> x=y=1
Lưu ý
Nhiều người sẽ nhầm \(VT\ge2\)
Khi đó dấu bằng \(\left(x+y+1\right)^2=xy+x+y\)không xảy ra
Ta có \(1+x^2=x^2+xy+yz+xz=\left(x+z\right)\left(x+y\right)\)
Khi đó BĐT <=>
\(\frac{1}{\left(x+y\right)\left(x+z\right)}+\frac{1}{\left(y+z\right)\left(x+z\right)}+\frac{1}{\left(x+y\right)\left(y+z\right)}\ge\frac{2}{3}\left(\frac{x}{\sqrt{\left(x+z\right)\left(x+y\right)}}+...\right)\)
<=> \(\frac{x+y+z}{\left(x+y\right)\left(y+z\right)\left(x+z\right)}\ge\frac{1}{3}\left(\frac{x\sqrt{y+z}+y\sqrt{x+z}+z\sqrt{x+y}}{\sqrt{\left(x+y\right)\left(y+z\right)\left(x+z\right)}}\right)^3\)
<=>\(\left(x+y+z\right)\sqrt{\left(x+y\right)\left(x+z\right)\left(y+z\right)}\ge\frac{1}{3}\left(x\sqrt{y+z}+y\sqrt{x+z}+z\sqrt{x+y}\right)^3\)
<=> \(\left(x+y+z\right)\sqrt{\left(x+y\right)\left(y+z\right)\left(x+z\right)}\ge\frac{1}{3}\left(\sqrt{x\left(1-yz\right)}+\sqrt{y\left(1-xz\right)}+\sqrt{z\left(1-xy\right)}\right)^3\)(1)
Xét \(\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge\frac{8}{9}\left(x+y+z\right)\left(xy+yz+xz\right)\)
<=> \(9\left[xy\left(x+y\right)+yz\left(y+z\right)+xz\left(x+z\right)+2xyz\right]\ge8\left(xy\left(x+y\right)+xz\left(x+z\right)+yz\left(y+z\right)+3xyz\right)\)
<=> \(xy\left(y+x\right)+yz\left(y+z\right)+xz\left(x+z\right)\ge6xyz\)
<=> \(x\left(y-z\right)^2+z\left(x-y\right)^2+y\left(x-z\right)^2\ge0\)luôn đúng
Khi đó (1) <=>
\(\left(x+y+z\right).\frac{2\sqrt{2}}{3}.\sqrt{x+y+z}\ge\frac{1}{3}\left(\sqrt{x\left(1-yz\right)}+....\right)^3\)
<=> \(\sqrt{2\left(x+y+z\right)}\ge\sqrt{x\left(1-yz\right)}+\sqrt{y\left(1-xz\right)}+\sqrt{z\left(1-xy\right)}\)
Áp dụng buniacopxki cho vế phải ta có
\(\sqrt{x\left(1-yz\right)}+\sqrt{y\left(1-xz\right)}+\sqrt{z\left(1-xy\right)}\le\sqrt{\left(x+y+z\right)\left(3-xy-yz-xz\right)}\)
\(=\sqrt{2\left(x+y+z\right)}\)
=> BĐT được CM
Dấu bằng xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}\)
Em thử ạ!Em không chắc đâu.Hơi quá sức em rồi
Ta có: \(VT=\Sigma\frac{x^3}{z+y+yz+1}=\Sigma\frac{x^3}{z+y+\frac{1}{x}+1}\)
\(=\Sigma\frac{x^4}{xz+xy+1+x}=\frac{x^4}{xy+xz+x+1}+\frac{y^4}{yz+xy+y+1}+\frac{z^4}{zx+yz+z+1}\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel,suy ra:
\(VT\ge\frac{\left(x^2+y^2+z^2\right)^2}{\left(x+y+z\right)+2\left(xy+yz+zx\right)+3}\)
\(\ge\frac{\left(\frac{1}{3}\left(x+y+z\right)^2\right)^2}{\left(x+y+z\right)+\frac{2}{3}\left(x+y+z\right)^2+3}\) (áp dụng BĐT \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3};ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\))
Đặt \(t=x+y+z\ge3\sqrt{xyz}=3\) Dấu "=" xảy ra khi x = y = z
Ta cần chứng minh: \(\frac{\frac{t^4}{9}}{\frac{2}{3}t^2+t+3}\ge\frac{3}{4}\Leftrightarrow\frac{t^4}{9\left(\frac{2}{3}t^2+t+3\right)}=\frac{t^4}{6t^2+9t+27}\ge\frac{3}{4}\)(\(t\ge3\))
Thật vậy,BĐT tương đương với: \(4t^4\ge18t^2+27t+81\)
\(\Leftrightarrow3t^4-18t^2-27t+t^4-81\ge0\)
Ta có: \(VT\ge3t^4-18t^2-27t+3^4-81\)
\(=3t^4-18t^2-27t\).Cần chứng minh\(3t^4-18t^2-27t\ge0\Leftrightarrow3t^4\ge18t^2+27t\)
Thật vậy,chia hai vế cho \(t\ge3\),ta cần chứng minh \(3t^3\ge18t+27\Leftrightarrow3t^3-18t-27\ge0\)
\(\Leftrightarrow3\left(t^3-27\right)-18\left(t-3\right)\ge0\)
\(\Leftrightarrow\left(t-3\right)\left(3t^2+9t+27\right)-18\left(t-3\right)\ge0\)
\(\Leftrightarrow\left(t-3\right)\left(3t^2+9t+9\right)\ge0\)
BĐT hiển nhiên đúng,do \(t\ge3\) và \(3t^2+9t+9=3\left(t+\frac{3}{2}\right)^2+\frac{9}{4}\ge\frac{9}{4}>0\)
Dấu "=" xảy ra khi t = 3 tức là \(\hept{\begin{cases}x=y=z\\xyz=1\end{cases}}\Leftrightarrow x=y=z=1\)
Chứng minh hoàn tất
Em sửa chút cho bài làm ngắn gọn hơn.
Khúc chứng minh: \(4t^4\ge18t^2+27t+81\)
\(\Leftrightarrow4t^4-18t^2-27t-81\ge0\)
\(\Leftrightarrow\left(t-3\right)\left(4t^3+12t^2+18t+27\right)\ge0\)
BĐT hiển nhiên đúng do \(t\ge3\Rightarrow\hept{\begin{cases}t-3\ge0\\4t^3+12t^2+18t+27>0\end{cases}}\)
Còn khúc sau y chang :P Lúc làm rối quá nên không nghĩ ra ạ!
\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\)
Ta có:
\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{1+b}{8}+\frac{1+c}{8}\ge\frac{3a}{4}\)
\(\Leftrightarrow\frac{a^3}{\left(1+b\right)\left(1+c\right)}\ge\frac{6a-b-c-2}{8}\)
Tương tự ta có: \(\hept{\begin{cases}\frac{b^3}{\left(1+c\right)\left(1+a\right)}\ge\frac{6b-c-a-2}{8}\\\frac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\frac{6c-a-b-2}{8}\end{cases}}\)
Cộng vế theo vế ta được
\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\frac{6a-b-c-2}{8}+\frac{6b-c-a-2}{8}+\frac{6c-a-b-2}{8}\)
\(=\frac{a+b+c}{2}-\frac{3}{4}\ge\frac{3}{2}.\sqrt[3]{abc}-\frac{3}{4}=\frac{3}{2}-\frac{3}{4}=\frac{3}{4}\)
Câu 2/
\(\frac{a^2+bc}{a^2\left(b+c\right)}+\frac{b^2+ca}{b^2\left(c+a\right)}+\frac{c^2+ab}{c^2\left(a+b\right)}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
\(\Leftrightarrow\frac{a^2+bc}{a^2\left(b+c\right)}-\frac{1}{a}+\frac{b^2+ca}{b^2\left(c+a\right)}-\frac{1}{b}+\frac{c^2+ab}{c^2\left(a+b\right)}-\frac{1}{c}\ge0\)
\(\Leftrightarrow\frac{\left(b-a\right)\left(c-a\right)}{a^2\left(b+c\right)}+\frac{\left(a-b\right)\left(c-b\right)}{b^2\left(c+a\right)}+\frac{\left(a-c\right)\left(b-c\right)}{c^2\left(a+b\right)}\ge0\)
\(\Leftrightarrow a^4b^4+b^4c^4+c^4a^4-a^4b^2c^2-a^2b^4c^2-a^2b^2c^4\ge0\)
\(\Leftrightarrow a^4b^4+b^4c^4+c^4a^4\ge a^4b^2c^2+a^2b^4c^2+a^2b^2c^4\left(1\right)\)
Ma ta có: \(\hept{\begin{cases}a^4b^4+b^4c^4\ge2a^2b^4c^2\left(2\right)\\b^4c^4+c^4a^4\ge2a^2b^2c^4\left(3\right)\\c^4a^4+a^4b^4\ge2a^4b^2c^2\left(4\right)\end{cases}}\)
Cộng (2), (3), (4) vế theo vế rồi rút gọn cho 2 ta được điều phải chứng minh là đúng.
PS: Nếu nghĩ được cách khác đơn giản hơn sẽ chép lên cho b sau. Tạm cách này đã.
\(\frac{x^3}{\left(1+y\right)\left(1+z\right)}+\frac{y^3}{\left(1+z\right)\left(1+x\right)}+\frac{z^3}{\left(1+x\right)\left(1+y\right)}\ge\frac{3}{4}\)
\(=\frac{x^3}{1+z+y+yz}+\frac{y^3}{1+x+z+xz}+\frac{z^3}{1+y+x+xy}\)
\(=\frac{x^3}{1+x+y+2y}\ge\frac{x}{2}\Rightarrow TổngBPT\ge\frac{x}{2}+\frac{y}{2}+\frac{z}{2}\ge\frac{2}{3}\left(đpcm\right)\)
(Không chắc à nha)
Ta có : \(\frac{x^3}{\left(1+y\right)\left(1+z\right)}+\frac{1+y}{8}+\frac{1+z}{8}\ge\frac{3x}{4}\)
\(\Rightarrow\frac{x^3}{\left(1+y\right)\left(1+z\right)}\ge\frac{6x-y-z-2}{8}\left(1\right)\)
Tương tự ta có : \(\hept{\begin{cases}\frac{y^3}{\left(1+z\right)\left(1+x\right)}\ge\frac{6y-z-x-2}{8}\left(2\right)\\\frac{z^3}{\left(1+x\right)\left(1+y\right)}\ge\frac{6z-x-y-2}{8}\left(3\right)\end{cases}}\)
Từ (1) , (2) và (3)
\(\Rightarrow\frac{x^3}{\left(1+y\right)\left(1+z\right)}+\frac{y^3}{\left(1+z\right)\left(1+x\right)}+\frac{z^3}{\left(1+x\right)\left(1+y\right)}\)
\(\ge\frac{6x-y-z-2}{8}+\frac{6y-z-x-2}{8}+\frac{6z-x-y-2}{8}\)
\(=\frac{1}{2}\left(x+y+z\right)-\frac{3}{4}\ge\frac{3}{2}-\frac{3}{4}=\frac{3}{4}\)
Chúc bạn học tốt !!!
Ta có : \(\frac{x^3}{\left(1+y\right)\left(1+z\right)}+\frac{1+y}{8}+\frac{1+z}{8}\ge\frac{3x}{4}\)
\(\Rightarrow\frac{x^3}{\left(1+y\right)\left(1+z\right)}\ge\frac{6x-y-z-2}{8}\left(1\right)\)
Tương tự ta có : \(\hept{\begin{cases}\frac{y^3}{\left(1+z\right)\left(1+x\right)}\ge\frac{6y-z-x-2}{8}\left(2\right)\\\frac{z^3}{\left(1+x\right)\left(1+y\right)}\ge\frac{6z-x-y-2}{8}\left(3\right)\end{cases}}\)
Từ (1) , (2) , (3)
\(\Rightarrow\frac{x^3}{\left(1+y\right)\left(1+z\right)}+\frac{y^3}{\left(1+z\right)\left(1+x\right)}+\frac{z^3}{\left(1+x\right)\left(1+y\right)}\)
\(\ge\frac{6x-y-z-2}{8}+\frac{6y-z-x-2}{8}+\frac{6z-x-y-2}{8}\)
\(=\frac{1}{2}\left(x+y+z\right)-\frac{3}{4}\ge\frac{3}{2}-\frac{3}{4}=\frac{3}{4}\)
Chúc bạn học tốt !!!
Áp dụng bđt AM-GM ta có:
\(\hept{\begin{cases}\frac{x^3}{\left(1+y\right)\left(1+z\right)}+\frac{1+y}{8}+\frac{1+z}{8}\ge3\sqrt[3]{\frac{x^3}{\left(1+y\right)\left(1+z\right)}.\frac{1+y}{8}.\frac{1+z}{8}}=\frac{3x}{4}\left(1\right)\\\frac{y^3}{\left(1+z\right)\left(1+x\right)}+\frac{1+z}{8}+\frac{1+x}{8}\ge3\sqrt[3]{\frac{y^3}{\left(1+z\right)\left(1+x\right)}.\frac{1+z}{8}.\frac{1+x}{8}}=\frac{3y}{4}\left(2\right)\\\frac{z^3}{\left(1+x\right)\left(1+y\right)}+\frac{1+x}{8}+\frac{1+y}{8}\ge3\sqrt[3]{\frac{z^3}{\left(1+x\right)\left(1+y\right)}.\frac{1+x}{8}.\frac{1+y}{8}}=\frac{3z}{4}\left(3\right)\end{cases}}\)
Lấy \(\left(1\right)+\left(2\right)+\left(3\right)\)ta được:
\(P+\frac{3+x+y+z}{4}\ge\frac{3\left(x+y+z\right)}{4}\)
\(\Leftrightarrow P\ge\frac{3\left(x+y+z\right)}{4}-\frac{3+x+y+z}{4}\)
\(\Leftrightarrow P\ge\frac{2\left(x+y+z\right)-3}{4}\left(1\right)\)
Áp dụng bdt AM-GM ta có:
\(x+y+z\ge3\sqrt[3]{xyz}=3\)Thay vào (1) ta được:
\(P\ge\frac{2.3-3}{4}\)
\(\Rightarrow P\ge\frac{3}{4}\)Dấu"="xảy ra \(\Leftrightarrow x=y=z\)
\(\Leftrightarrow\frac{x^2+y^2+2x+2y+2}{\left(1+x+y+xy\right)^2}\ge\frac{1}{1+xy}\)
\(\Leftrightarrow\left(1+xy\right)\left[\left(x-y\right)^2+2\left(xy+x+y+1\right)\right]\ge\left(1+x+y+xy\right)^2\)
\(\Leftrightarrow\left(1+xy\right)\left(x-y\right)^2+\left(1+x+y+xy\right)\left(2+2xy-1-x-y-xy\right)\ge0\)
\(\Leftrightarrow\left(1+xy\right)\left(x-y\right)^2+\left(xy+1+x+y\right)\left(xy+1-x-y\right)\ge0\)
\(\Leftrightarrow\left(1+xy\right)\left(x-y\right)^2+\left(xy+1\right)^2-\left(x+y\right)^2\ge0\)
\(\Leftrightarrow\left(x-y\right)^2+xy\left(x-y\right)^2+x^2y^2+1-x^2-y^2\ge0\)
\(\Leftrightarrow xy\left(x-y\right)^2+\left(xy-1\right)^2\ge0\) (luôn đúng)