Cho tam giác cân ABC cân tại A (AB = AC). Gọi D, E lần lượt là trung điểm của AB AC.
a) Chứng minh tam giác ABE = tam giác ACD.
b) Chứng minh BE = CD.
c) Gọi K là giao điểm của BE và CD. Chứng minh KBC cân tại K.
d) Chứng minh AK là tia phân giác của BAC
a, D, E là trung điểm của AB và AC (gt)
AB = AC do tam giác ABC cân tại A (gt)
=> AD = AE = AB/2
xét tam giác ABE và tam giác ACD có : góc A chung
AB = AC (cmt)
=> tam giác ABE = tam giác ACD (c-g-c)
b, tam giác ABE = tam giác ACD (Câu a)
=> BE = CD (đn)
c, tam giác ABE = tam giác ACD (câu a)
=> góc ABE = góc ACD (đn)
góc ABC = góc ACB do tam giác ABC cân tại A (gt)
góc ABE + góc EBC = góc ABC
góc ACD + góc DCB =góc ACB
=> góc KBC = góc KCB
=> tam giác KBC cân tại K (đn)
d, tam giác KBC cân tại K (câu c)
=> BK = CK (đn)
xét tam giác AKB và tam giác AKC có : AB = AC
góc ABK = góc ACK
=> tam giác AKB = góc AKC (c-g-c)
=>góc BAK = góc CAK (đn) mà AK nằm giữa AB và AC
=> AK là phân giác của góc BAC (đn)