tìm một phân số nhỏ hown1 có tổng của tử và mẫu là 32,biết rằng nếu tăng mẫu thêm 10 đơn vị và giảm tử đi một nửa thì được phân số mới bằng phân số 2/17
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi tử số là x
Mẫu số là 15 - x
Theo đề ra, ta có phương trình:
\(\frac{x-5}{15-x+2}=\frac{1}{5}\)
\(\Leftrightarrow\frac{x-5}{17-x}=\frac{1}{5}\)
\(\Leftrightarrow5\left(x-5\right)=17-x\)
\(\Leftrightarrow5x-25=17-x\)
\(\Leftrightarrow5x+x=17+25\)
\(\Leftrightarrow6x=42\)
\(\Leftrightarrow x=7\)
Vậy tử số là 7, mẫu số là 15 - 7 = 8 => Phân số ban đầu là \(\frac{7}{8}\)
Vì cộng thêm vào tử số 2 đơn vị và bớt 2 đơn vị ở mẫu số thì được phân số mới có tổng của tử số và mẫu số là 97. Suy ra: Tổng của tử số và mẫu số trước khi thêm và bớt là 97
Nếu thêm vào tử số 7 đơn vị và bớt mẫu số đi 8 đơn vị thì được phân số mới có giá trị bằng 1 có nghĩa là phân số mới có tử số bằng mẫu số. Suy ra: Mẫu số cũ lớn hơn tử số cũ là: 7 + 8 = 15
Tử số là: (97 - 15) : 2 = 41
Mẫu số là: 97 - 41 = 56
Vậy: Phân số cần tìm là: 41/56
Gọi tử số là x
Mẫu số là: x+8
Theo đề bài ta có:
\(\frac{x+2}{x+8-3}=\frac{3}{4}\)
\(\Leftrightarrow\frac{x+2}{x+5}=\frac{3}{4}\)
\(\Leftrightarrow3\cdot\left(x+5\right)=4\cdot\left(x+2\right)\)
\(\Leftrightarrow3x+15=4x+8\)
\(\Leftrightarrow-x=-7\)
\(\Leftrightarrow x=7\)
Suy ra: tử số là 7
Mẫu số là: 7+8 = 15
Vậy phân số cần tìm là: \(\frac{7}{15}\)
Khi thêm vào tử số và bớt ở mẫu số một số đơn vị thì hiệu tổng không thay đổi
Hiệu giữa mẫu số và tử số là:
7 + 8 = 15
Tử số phân số đó là:
(97 - 15) : 2 = 41
Mẫu số phân số đó là:
97 - 41 = 56
Phân số càn tìm là \(\frac{41}{56}\)
Đáp số; \(\frac{41}{56}\)
Khi thêm vào tử số và bớt ở mẫu số một số đơn vị thì hiệu tổng không thay đổi
Hiệu giữa mẫu số và tử số là:
7 + 8 = 15
Tử số phân số đó là:
(97 - 15) : 2 = 41
Mẫu số phân số đó là:
97 - 41 = 56
Phân số càn tìm là $\frac{41}{56}$4156
Đáp số;
1) Nếu chuyển từ mẫu số lên tử số \(12\)đơn vị thì tổng của tử số và mẫu số không đổi.
Khi đó tử số mới là:
\(210\div2=105\)
Tử số ban đầu là:
\(105-12=93\)
Mẫu số ban đầu là:
\(210-93=117\)
Phân số cần tìm là: \(\frac{93}{117}\).
2) Nếu thêm \(9\)đơn vị vào tử số thì tổng tử số mới và mẫu số là:
\(175+9=184\)
Tử số mới hay mẫu số là:
\(184\div2=92\)
Tử số là:
\(92-9=83\)
Phân số cần tìm là: \(\frac{83}{92}\).
Gọi tử là: x
mẫu là: y\(\left(y\ne0\right)\)
\(\Rightarrow x+y=32\left(1\right)\)
Vì khi tăng mẫu thêm 10 đơn vị và giảm tử đi 1 nửa thì được phân số mới bằng \(\frac{2}{17}\)
\(\Rightarrow\frac{x.0,5}{y+10}=\frac{2}{17}\Leftrightarrow8,5x-2y=20\left(2\right)\)
Từ (1) và (2) ta có hệ phương trình:
\(\hept{\begin{cases}x+y=32\\8,5x-2y=20\end{cases}\Leftrightarrow\hept{\begin{cases}x=8\\y=24\end{cases}}}\)
\(\Rightarrow\)Phân số cằn tìm là: \(\frac{8}{24}=\frac{1}{3}\)