K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2022

a) Vì OA<OBOA<OB

⇒A⇒A nằm giữa O và B

Do đó, A nằm trong góc tạo bảo hai tia OM,BMOM,BM

Hay : AA nằm trong góc OMBOMB

b) Vì EE thuộc tia đối tia OxOx

⇒O⇒O nằm giữa B và E

Vì vậy, E nằm ngoài góc EMB

20 tháng 1 2019

B xem phần giải bt hình học sgk nhé, có bài tương tự https://cunghocvui.com/danh-muc/toan-lop-6

Bài 3.2đ Vẽ tia Ox. Trên tia Ox lấy hai điểm A và B sao cho OA = 2cm, OB = 3,5cm.a. Tính độ dài đoạn thẳng AB.b. Trên tia Bx lấy điểm C sao cho AC = 3cm. Điểm B có là trung điểm của đoạn AC không?c. Lấy điểm M nằm ngoài đường thẳng AB, trong ba tia MA, MC, MO tia nào nằm giữa hai tia còn lại?Bài 4. Thưởng 1 điểm1) Tìm số tự nhiên  nhỏ nhất sao cho khi chia cho 11 dư 6, chia cho 4 dư 1và chia   cho 19 dư 11.2)...
Đọc tiếp

Bài 3.2đ Vẽ tia Ox. Trên tia Ox lấy hai điểm A và B sao cho OA = 2cm,

 OB = 3,5cm.

a. Tính độ dài đoạn thẳng AB.

b. Trên tia Bx lấy điểm C sao cho AC = 3cm. Điểm B có là trung điểm của đoạn AC không?

c. Lấy điểm M nằm ngoài đường thẳng AB, trong ba tia MA, MC, MO tia nào nằm giữa hai tia còn lại?

Bài 4. Thưởng 1 điểm

1) Tìm số tự nhiên  nhỏ nhất sao cho khi chia cho 11 dư 6, chia cho 4 dư 1và chia   cho 19 dư 11.

2) Chứng minh rằng: 32 + 33+ 34 +……+ 3101 chia hết cho 120.Bài 3.2đ Vẽ tia Ox. Trên tia Ox lấy hai điểm A và B sao cho OA = 2cm,

 OB = 3,5cm.

a. Tính độ dài đoạn thẳng AB.

b. Trên tia Bx lấy điểm C sao cho AC = 3cm. Điểm B có là trung điểm của đoạn AC không?

c. Lấy điểm M nằm ngoài đường thẳng AB, trong ba tia MA, MC, MO tia nào nằm giữa hai tia còn lại?

Bài 4. Thưởng 1 k

1) Tìm số tự nhiên  nhỏ nhất sao cho khi chia cho 11 dư 6, chia cho 4 dư 1và chia   cho 19 dư 11.

2) Chứng minh rằng: 32 + 33+ 34 +……+ 3101 chia hết cho 120.

1
21 tháng 3 2020

Bài 4:

1) n-6 chia hết cho 11 => n-6+33=n+27 chia hết cho 11

n-1 chia hết cho 4 => n-1+28 = n+27 chia hết cho 4

n-11 chia hết cho 19 => n-11+38 = n+27 chia hết cho 19

=> n+27 là BCNN(4, 11, 19) = 836

=> n = 809.

2)

S = 3(3+3^2+3^3+3^4)+...+3^97(3+3^2+3^3+3^4)=(...)*120 chia hết cho 120