tìm số nguyên n để:
a) n2 − 7 là bội của n + 3 b) n + 3 là bội của n2 − 7
Tìm hai số nguyên mà tích của chúng bằng hiệu của chúng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)2n-7=2(n+3)-13 Mà 2(n+3) là bội của n+3 =>n+3 thuộc B(13) =>n+3=1:13 Ta có bảng sau:
n+3 | 1 | 13 |
n | -2 | 10 |
vậy...
a) – 13 là bội của n – 2
=>n−2∈Ư (−13)={1; −1;13; −13}
=> n∈{3;1;15; −11}
Vậy n∈{3;1;15; −11}.
b) 3n + 2 ⋮2n−1 => 2(3n + 2) ⋮2n−1 => 6n + 4 ⋮2n−1 (1)
Mà 2n−1⋮2n−1 => 3(2n−1) ⋮2n−1 => 6n – 3 ⋮2n−1 (2)
Từ (1) và (2) => (6n + 4) – (6n – 3) ⋮2n−1
=> 7 ⋮2n−1
=> 2n−1 ∈Ư(7)={1; −1;7; −7}
=>2n ∈{2;0;8; −6}
=>n ∈{1;0;4; −3}
Vậy n ∈{1;0;4; −3}.
c) n2 + 2n – 7 ⋮n+2
=>n(n+2)−7⋮n+2
=>7⋮n+2=>n+2∈{1; −1;7; −7}
=>n∈{−1; −3;5; −9}
Vậy n∈{−1; −3;5; −9}
d) n2+3n−5 là bội của n−2
=> n2+3n−5 ⋮ n−2
=> n2−2n+5n−10+5 ⋮ n−2
=> n(n - 2) + 5(n - 2) + 5 ⋮ n−2
=> 5 ⋮ n−2=>n−2∈{1; −1;5; −5}=>n∈{3; 1;7; −3}
Vậy n∈{3; 1;7; −3}.
Đk: n∈Zn∈Z
a)a) Để 1919 là bội của n−3n-3 thì:
19⋮n−319⋮n-3
⇒n−3∈Ư(19)={±1;±19}⇒n-3∈Ư(19)={±1;±19}
⇒n∈{2;4;−16;22}⇒n∈{2;4;-16;22}
b)b) Để 2n+72n+7 là bội của n−3n-3 thì:
2n+7⋮n−32n+7⋮n-3
⇒2n−6+13⋮n−3⇒2n-6+13⋮n-3
Vì 2n−6⋮n−32n-6⋮n-3
⇒13⋮n−3⇒13⋮n-3
⇒n−3∈Ư(13)={±1;±13}⇒n-3∈Ư(13)={±1;±13}
⇒n∈{2;4;−10;16}⇒n∈{2;4;-10;16}
c)c) Để n+2n+2 là ước của 5n−15n-1 thì:
5n−1⋮n+25n-1⋮n+2
⇒5n+10−11⋮n+2⇒5n+10-11⋮n+2
Vì 5n+10⋮n+25n+10⋮n+2
⇒−11⋮n+2⇒-11⋮n+2
⇒n+2∈Ư(−11)={±1;±11}⇒n+2∈Ư(-11)={±1;±11}
⇒n∈{−3;−1;−13;9}⇒n∈{-3;-1;-13;9}
d)d) Để n−3n-3 là bội của n2+4n2+4 thì:
n−3⋮n2+4n-3⋮n2+4
⇒(n−3)2⋮n2+4⇒(n-3)2⋮n2+4
⇒(n+3)(n−3)⋮n2+4⇒(n+3)(n-3)⋮n2+4
⇒n(n−3)+3(n−3)⋮n2+4⇒n(n-3)+3(n-3)⋮n2+4
⇒n2−3n+3n−9⋮n2+4⇒n2-3n+3n-9⋮n2+4
⇒n2−9⋮n2+4⇒n2-9⋮n2+4
⇒n2+4−13⋮n2+4⇒n2+4-13⋮n2+4
Vì n2+4⋮n2+4n2+4⋮n2+4
⇒−13⋮n2+4⇒-13⋮n2+4
⇒n2+4∈Ư(−13)={±1;±13}⇒n2+4∈Ư(-13)={±1;±13}
⇒n2∈{−5;−3;−17;9}⇒n2∈{-5;-3;-17;9}
⇒n2∈{9}⇒n2∈{9}
⇒n∈{±3}⇒n∈{±3}
Bài 3:
ƯC(−15;20)={±1;±5}
1)
a)
Gọi 3 STN liên tiếp là a;a+1;a+2
Ta có:a+(a+1)+(a+2)
=3a+3
=3(a+1) chia hết cho 3
=>ĐPCM
2)
a)3n chia hết cho n-1
Ta có 3n=3n-3+3
=3(n-1)+3
Vì 3(n-1) chia hết cho (n-1)
Để [3(n-1)+3] chia hết cho (n-1)<=>3 chia hết cho (n-1)<=> (n-1) thuộc Ư(3)
Ta có Ư(3)={1;3;-1;-3}
+n-1=-3=>n=-2
+n-1=-1=>n=0
+n-1=1=>n=2
+n-1=3=>n=4
Vậy n thuộc{0;2;-2;4} thì 3n chia hết cho (n-1)
Những câu dưới tương tự
*Mình chỉ làm mẫu vài bài thôi nhé!! Chứ mình lười lắm!!* 😊
1)
a,
Gọi 3 số nguyên liên tiếp là k;k+1;k+2(k thuộc Z)
Tổng của 3 số nguyên đó là:
k+(k+1)+(k+2)=k+k+1+k+2=3k+3=3(k+1)
Mà 3(k+1) chia hết cho 3 => (đpcm)
2)
a, 3n chia hết cho n-1
=> (3n-3)+3 chia hết cho n-1
=> [3(n-1)]+3 chia hết cho n-1
Vì n-1 chia hết cho n-1
Nên 3(n-1) chia hết cho n-1
=> 3 chia hết cho n-1
Hay n-1 thuộc Ư(3)={1;-1;3;-3}
Do đó: n thuộc {2;0;4;-2}
b, Để 2n+7 là bội của n-3 thì:
2n+7 chia hết cho n-3
=> (2n-6)+13 chia hết cho n-3
=> [2(n-3)]+13 chia hết cho n-3
Vì n-3 chia hết cho n-3
Nên 2(n-3) chia hết cho n-3
=> 13 chia hết cho n-3
Hay n-3 thuộc Ư(13)={1;-1;13;-13}
Do đó: n thuộc {4;2;16;-10}
c, Để n+2 là ước của 5n-1 thì:
5n-1 chia hết cho n+2
=> (5n+10)-11 chia hết cho n+2
=> [5(n+2)]-11 chia hết cho n+2
Vì n+2 chia hết cho n+2
Nên 5(n+2) chia hết cho n+2
=> 11 chia hết cho n+2
Hay n+2 thuộc Ư(11)={1;-1;11;-11}
Do đó: n thuộc {-1;-3;9;-13}
3) Gọi 2 số nguyên cần tìm là x và y(x,y thuộc Z)
Theo đề, ta có:
xy=x-y => xy-(x-y)=0 => xy-x+y=0
=> x(y-1)+y=0 => x(y-1)+y-1=-1
=> (x+1)(y-1)=-1
Mặt khác: -1=(-1).1=1.(-1)
~Rồi bạn xét hai trường hợp nhé!!
*Đúng nhớ tk giúp 😊*
a, Ta có: n2-7=n2-9+2=n2-32+2=(n+3)(n-3)+2
=>(n+3)(n-3)+2\(⋮\)n+3
=>2\(⋮\)n+3
=>n+3\(\in\){-2; -1; 1; 2}
=>n\(\in\){-5; -4; -2; -1}
Vậy............
đợi mk nghĩ phần b !