K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2020

Xét △ABC vuông tại C có:

\(AB^2=AC^2+BC^2\) (định lí Pytago)

Vậy chọn đáp án A

7 tháng 3 2020

3. Cho tam giác ABC vuông tại A. Theo định lí Pitago ta có:

A. AC mũ 2= AB mũ 2 + BC mũ 2 B. AB mũ 2= AC mũ 2 + BC mũ 2

C. BC mũ 2 = AB mũ 2 + AC mũ 2 D. BC mũ 2 = AB mũ 2 - AC mũ 2

Chúc bạn học tốt!

12 tháng 6 2020

A B C H

Bài làm:

Ta có:
Xét trong tam giác vuông BHA vuông tại H có:
\(\widehat{BAH}+\widehat{ABH}=90^0\Rightarrow\widehat{BAH}=90^0-\widehat{ABH}=90^0-\widehat{B}\)
(1)

Xét trong tam giác vuông ABC vuông tại A có:

\(\widehat{ABC}+\widehat{ACB}=90^0\Rightarrow\widehat{ACB}=90^0-\widehat{ABC}=90^0-\widehat{B}\)(2)

Từ (1) và (2)

=> \(\widehat{BAH}=\widehat{ACB}=\widehat{C}\)

b) Phần b mình nghĩ bạn viết sai đề rồi nhé

Mình nghĩ đề sửa lại phải là: \(AB^2+CH^2=AC^2+BH^2\)

Xét tam giác vuông AHB vuông tại H có:

\(AB^2=BH^2+AH^2\)\(\Rightarrow AB^2-BH^2=AH^2\left(3\right)\)

Xét tam giác vuông AHC vuông tại H có:

\(AC^2=CH^2+AH^2\)\(\Rightarrow AC^2-CH^2=AH^2\)(4)

Từ (3) và (4)

=> \(AB^2-BH^2=AC^2-CH^2\)

<=> \(AB^2+CH^2=AC^2+BH^2\)

=> ĐPCM

Học tốt!!!!


 

5 tháng 3 2018

Ta có 

a3+b3+c3=a3+3ab(a+b)+b3+c3-3ab(a+b)

               =(a+b)3+c3-3ab(a+b)

               =(a+b+c)[(a+b)2-(a+b)c+c]-3ab(a+b+c)+3abc

               =(a+b+c)(a2+b2+c2+2ab-ac-bc-3ab)+3abc

                  =(a+b+c)(a2+b2+c2-ab-bc-ca)+3abc

Tớ chỉ phân tích đc như vậy thôi !!!                               

undefinedMình làm hơi tắt chút do ngại trình bầy cái định lý pi - ta - go ở tam giác BDE