Cho tam giác ABC có AB=AC=4cm,BC=6cm. Kẻ AH vuông góc với BC (H thuộc BC)
a/ Chứng minh: HB=HCvà góc BAH=góc CAH.
b/ Tính độ dài AH.
c/ Kẻ HM vuông góc với AB (M thuộc AB), kẻ HN vuông góc với AC (N thuộc AC). Chứng minh tam giác MHN là tam giác cân.
a, Xét △ABH vuông tại H và △ACH vuông tại H
Có: AB = AC (gt)
AH là cạnh chung
=> △ABH = △ACH (ch-cgv)
=> HB = HC (2 cạnh tương ứng) và BAH = CAH (2 góc tương ứng)
b, Ta có: BH + HC = BC => BH + HC = 6 (cm)
Mà HB = HC (cmt)
=> HB = HC = 6 : 2 = 3 (cm)
Xét △BAH vuông tại H
Có: AH2 + HB2 = AB2 (định lý Pytago)
=> AH2 = AB2 - HB2
=> AH2 = 42 - 32
=> AH2 = 16 - 9
=> AH2 = 7
=> AH = √ 7 (cm)
c, Vì △ABC có: AB = AC (gt) => △ABC cân tại A => ABC = ACB
Xét △BHM vuông tại M và △CHN vuông tại N
Có: BH = HC (cmt)
MBH = NCH (cmt)
=> △BHM = △CHN (ch-gn)
=> MH = NH (2 cạnh tương ứng)
Xét △MNH có: MH = NH (cmt) => △MNH cân tại H