cho a,b,c là các số nguyên tố cùng nhau.
chứng minh A= ab+ ac +bc và B= a+b+c và C=abc nguyên tố cùng nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi d là 1 ước nguyên tố của ab,a+b thế thì ab chia hết cho d và a+b cũng như thế
Vì ab chia hết cho d nên a hoặc b chia hết cho d(vì d là số nguyên tố). Giả sử a chia hết cho d mà a+b chia hết cho d nên b chia hết cho d => d là ước nguyên tố của a và b, trái với đề bài cho a và b nguyên tố cùng nhau hay ƯCLN(a,b)=1 Vậy ...............
gọi d là 1 ước nguyên tố của ab,a+b thế thì ab chia hết cho d và a + b cũng như thế
Vì ab chia hết cho d nên a hoặc b chia hết cho d (vì d là số nguyên tố).Gỉa sử a chia hết cho d mà a + b chia hết cho d nên b chia hết cho d=> d là ước nguyên tố của a và b trái với đề bài cho a và b nguyên tố cùng nhau hay UCLN(a,b) = 1 vậy.....................
Hk tốt,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
ê cô đã giải cho cậu bài này chưa bày mình với please mình đang rất cần
goi UCLN( a,b , c) la d
ta co
a chia het cho d , b chia het cho d , c chia het cho d
suy ra a.bchia het cho d
b.c chia het cho d
ca cung chia het cho d
suy ra abc cung chia het cho d
va a+b+c cung chia het cho d
trái với (a,b,c)=1
suy ra (ab+bc+ca; a+b+c;abc)=1
vay UCLN(A,B,C )=1
Gọi x là \(ƯC\left(8a+3b,5a+2b\right)\)
Ta có : \(8a+3b⋮x,5a+2b⋮x\)
\(\Rightarrow8a+3b-5a+2b⋮x\)
\(\Rightarrow2\left(8a+3b\right)-3\left(5a+2b\right)⋮x\)
\(\Rightarrow16a+16b-15a+6b⋮x\)
\(\Rightarrow1a⋮x\)
Vậy \(d=1\)nên \(8a+3b\)và \(5a+2b\)cũng là hai số nguyên tố cùng nhau
Gọi \(d=ƯCLN\)\(\left(8a+3b;5a+2b\right)\)\(\left(d>0\right)\)
\(\Rightarrow\hept{\begin{cases}8a+3b⋮d\\5a+2b⋮d\end{cases}\left(1\right)}\)
\(\Rightarrow\hept{\begin{cases}5\left(8a+3b\right)⋮d\\8\left(5a+2b\right)⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}40a+15b⋮d\\40a+16b⋮d\end{cases}}\)
\(\Rightarrow\left(40a+16b\right)-\left(40a+15b\right)⋮d\)
\(\Rightarrow b⋮d\left(2\right)\)
Từ \(\left(1\right)\Rightarrow\hept{\begin{cases}2\left(8a+3b\right)⋮d\\3\left(5a+2b\right)⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}16a+6b⋮d\\15a+6b⋮d\end{cases}}\)
\(\Rightarrow\left(16a+6b\right)-\left(15a+6b\right)⋮d\)
\(\Rightarrow a⋮d\left(3\right)\)
Từ \(\left(2\right)\)và \(\left(3\right)\Rightarrow\hept{\begin{cases}a⋮d\\b⋮d\end{cases}}\)
Mà \(\left(a;b\right)=1\)
\(\Rightarrow d=1\)
\(\Rightarrow\left(8a+3b;5a+2b\right)=1\)
\(\Rightarrowđpcm\)