Cho tam giác ABC có cạnh BC = m. Trên cạnh AB lấy các điểm D, E sao cho AD = DE = EB. Từ D, E kẻ các đường thẳng song song với BC cắt cạnh AC theo thứ tự ở M và N. Tính độ dài các đoạn thẳng DM, EN theo m
giải nhanh giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dựa vào tính chất đường trung bình của tam giác:
DM=EN/2
theo tính chất đương trung bình của hình thang:
EN=(DM+m)/2
Trong ΔABC, ta có: DM // BC (gt)
Nên (Hệ quả định lí Ta-lét)
Suy ra : (3)
Từ (1) và (3) suy ra:
Suy ra:
Trong ΔABC, ta có: EN // BC (gt)
Từ (2) và (4) suy ra: hay
qua N kẻ đường thẳng song song với AB cắt BC tại K .
Vì EN song song với BK; NK song song với EB nên EB=NK;EN=BK (tính chất đoạn chắn)
nên NK=AD. Vì DM song song với BC nên góc( từ sau góc mình kí hiệu là >) DMA = >ACB . Vì NK song song với AB nên >A= >KNC \(\Rightarrow\) >B=>NKC Do đó ΔADM=ΔNKC (g.c.g). nên DM=KC
Suy ra DM+EN=BK+CK=BC(dpcm)
Từ N kẻ đường thẳng song song vói AB cắt BC tại K. Nối EK.
Xét ΔBEK và Δ NKE, ta có:
∠(EKB) =∠(KEN) (so le trong vì EN // BC)
EK cạnh chung
∠(BEK) =∠(NKE) (so le trong vì NK // AB))
Suy ra: Δ BEK = Δ NKE(g.c.g)
Suy ra: BE = NK (hai cạnh tương ứng)
EN = BK (hai cạnh tương ứng)
Xét Δ ADM và Δ NKC, ta có:
∠A =∠(KNC) (đồng vị vì NK // AB)
AD = NK ( vì cùng bằng BE)
∠(ADM) =∠(NKC) (vì cùng bằng góc B)
Suy ra: Δ ADM = Δ NKC(g.c.g)
Suy ra: DM = KC (hai cạnh tương ứng)
Mà BC = BK + KC. Suy ra: BC = EN + DM
Từ N kẻ đường thẳng song song với AB cắt BC tại K. Nối EK.
Xét ∆BEK và ∆NKE, ta có:
ˆEKB=ˆKENEKB^=KEN^ (so le trong vì EN // BC)
EK cạnh chung
ˆBEK=ˆNKEBEK^=NKE^ (so le trong vì NK // AB)
Suy ra: ∆BEK = ∆NKE (g.c.g)
Suy ra: BE = NK (hai cạnh tương ứng)
EN = BK (hai cạnh tương ứng)
Xét ∆ADM và ∆NKC, ta có:
ˆA=ˆKNCA^=KNC^ (đồng vị vì NK // AB)
AD = NK (vì cùng bằng BE)
ˆADM=ˆNKCADM^=NKC^ (vì cùng bằng ˆBB^)
Suy ra: ∆ADM = ∆NKC (c.g.c)
=>DM = KC (hai cạnh tương ứng)
Mà BC = BK + KC. Suy ra: BC = EN + DM
Kẻ NF // AB (F thuộc BC)
Xét tam giác BEF và tam giác NFE có:
BEF = NFE (2 góc so le trong, NF // BE)
FE chung
EFB = FEN (2 góc so le trong, EN // FB)
=> Tam giác BEF = Tam giác NFE (g.c.g)
=> BE = NF (2 cạnh tương ứng)
mà BE = AD (gt)
=> AD = NF
Xét tam giác ADM và tam giác NFC có:
MDA = CFN (2 góc đồng vị, DM // FC)
DA = FN (chứng minh trên)
DAM = FNC (2 góc đồng vị, AD // NF)
=> Tam giác ADM = Tam giác NFC (g.c.g)
=> DM = FC (2 cạnh tương ứng)
mà EN = BF (tam giác BEF = tam giác NFE)
=> DM + EN = BF + FC = BC