Cho tam giác ABC, các tia phân giác BM, CN (M trên AC, N trên AB) cắt nhau tại D. CMR:
Tam giác ABC vuông tại A khi và chỉ khi 2BD.CD= BM.CN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD và ΔAMD có
AB=AM
góc BAD=góc MAD
AD chung
Do đó; ΔABD=ΔAMD
b: Xét ΔDBN và ΔDMC có
góc DBN=góc DMC
DB=DM
góc BDN=góc MDC
Do đó; ΔDBN=ΔDMC
=>BN=MC
c: Xét ΔANC có AB/BN=AM/MC
nên BM//CN
a: Xét ΔABM và ΔACN có
AB=AC
\(\widehat{ABM}=\widehat{ACN}\)
BM=CN
Do đó: ΔABM=ΔACN
Suy ra: AM=AN
b: Xét ΔBEM vuông tại E và ΔCFN vuông tại F có
BM=CN
\(\widehat{M}=\widehat{N}\)
Do đó:ΔBEM=ΔCFN
c: Ta có: ΔBEM=ΔCFN
nên \(\widehat{BEM}=\widehat{CFN}\)
=>\(\widehat{OBC}=\widehat{OCB}\)
hay ΔOBC cân tại O
=>OB=OC
hay O nằm trên đường trung trực của BC(1)
Ta có: AB=AC
nên A nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA là đường trung trực của BC
=>OA\(\perp\)BC
Ta có: ΔAMN cân tại A
mà AO là đường cao
nên AO là phân giác của góc MAN