Cho \(M=\frac{a}{a+b+c}+\frac{b}{a+b+d}+\frac{c}{b+c+d}+\frac{d}{a+c+d}\) với a,b,c,d thuộc N*
Chứng minh M không nhận giá trị là số tự nhiên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\frac{a}{a+b+c}+\frac{b}{a+b+d}+\frac{c}{a+c+d}+\frac{d}{b+c+d}>\frac{a+b+c+d}{a+b+c+d}=1\)
Chứng minh tương tự để từ đó
=>M<2
Vậy 1<M<2
=> M ko là số tự nhiên
@Bài sửa
Với a, b, c, d là các số tự nhiên
\(\Rightarrow\frac{a}{a+b}>\frac{a}{a+b+c};\frac{b}{b+c}>\frac{b}{b+c+a};\frac{c}{c+a}>\frac{c}{c+a+b}\)
\(\Rightarrow M>\left(\frac{a}{a+b+c}+\frac{b}{b+c+a}+\frac{c}{c+a+b}\right)\)
\(\Rightarrow M>1\) (*)
Ta lại có:
\(\frac{a}{a+b}<\frac{a+b}{a+b+c};\frac{b}{b+c}<\frac{b+c}{b+c+a};\frac{c}{c+a}<\frac{c+a}{c+a+b}\)
\(\Rightarrow M<\left(\frac{a+b}{a+b+c}+\frac{b+c}{b+c+a}+\frac{c+a}{c+a+b}\right)\)
\(\Rightarrow M<2\) (**)
Từ (*) và (**) ta có 1 < M < 2 suy ra M không là số tự nhiên
Với a, b, c, d là các số tự nhiên
\(\Rightarrow\frac{a}{a+b}<\frac{a}{a+b+c};\frac{b}{b+c}<\frac{b}{b+c+a};\frac{c}{c+a}<\frac{c}{c+a+b}\)
\(\Rightarrow M=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}<\frac{a}{a+b+c}+\frac{b}{b+c+a}+\frac{c}{c+a+b}=1\)
\(\Rightarrow M<1\) (*)
Ta lại có:
\(\frac{a}{a+b}>\frac{a+b}{a+b+c};\frac{b}{b+c}>\frac{b+c}{b+c+a};\frac{c}{c+a}>\frac{c+a}{c+b+a}\)
\(\Rightarrow M=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a+b}{a+b+c}+\frac{b+c}{b+c+a}+\frac{c+a}{c+a+b}=2\)
\(\Rightarrow M<2\) (**)
Từ (*) và (**) ta có 1 < M < 2 suy ra M không là số tự nhiên
M không có giá trị tự nhiên vì để m là số tự nhiên thì các phân số phải là số tự nhiên mà tử số lớn hơn mẫu số nên số đó không phải là số tự nhiên
ta có : M > a/a+b+c+d + b/a+b+c+d + c/a+b+c+d +d/a+b+c+d = 1
M < (a/a+b + b/a+b)+(c/c+d + d/c+d) = 1+1=2
=> 1<M<2
=>M ko phải là số tự nhiên
Ta có :
\(\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\)
\(\frac{b}{b+c+d}>\frac{b}{a+b+c+d}\)
\(\frac{c}{c+d+a}>\frac{c}{a+b+c+d}\)
\(\frac{d}{d+a+b}>\frac{d}{a+b+c+d}\)
\(\Rightarrow\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}>\frac{a}{a+b+c+d}+\frac{b}{a+b+c+d}+\frac{c}{a+b+c+d}+\frac{d}{a+b+c+d}=1\)\(\Rightarrow A>1\)( 1 )
Lại có :
\(\frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\)
\(\frac{b}{b+c+d}< \frac{b+a}{a+b+c+d}\)
\(\frac{c}{c+d+a}< \frac{c+b}{a+b+c+d}\)
\(\frac{d}{d+a+b}< \frac{d+c}{a+b+c+d}\)
\(\Rightarrow\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< \frac{a+d}{a+b+c+d}+\frac{a+b}{a+b+c+d}+\frac{c+b}{a+b+c+d}+\frac{d+c}{a+b+c+d}=2\)
\(\Rightarrow A< 2\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)A không phải là số tự nhiên ( vì 1 < A < 2 )
Ta thấy:
\(\frac{a+d}{a+b+c+d}>\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\)
\(\frac{b+a}{a+b+c+d}>\frac{b}{b+c+d}>\frac{b}{a+b+c+d} \)
\(\frac{c+b}{a+b+c+d}>\frac{c}{c+d+a}>\frac{c}{a+b+c+d}\)
\(\frac{d+c}{a+b+c+d}>\frac{d}{d+a+b}>\frac{d}{a+b+c+d}\)
Do đó:
\(\frac{a+d}{a+b+c+d}+\frac{b+a}{a+b+c+d}+\frac{c+d}{a+b+c+d}+\frac{d+c}{a+b+c+d}>A\)
VÀ \(A>\)\(\frac{a}{a+b+c+d}+\frac{b}{a+b+c+d}+\frac{c}{a+b+c+d}+\frac{d}{a+b+c+d}\)
\(\Rightarrow2>A>1\)
\(\Rightarrow\)A không là số tự nhiên với a,b,c,d > 0
Vậy A không là số tự nhiên với a,b,c,d > 0
\(M=\frac{a}{a+b+c}+\frac{b}{a+b+d}+\frac{c}{a+c+d}+\frac{d}{b+c+d}\)\(=\frac{a+b+c+d}{a+b+c+a+b+d+a+c+d+b+c+d}\)
\(=\frac{a+b+c+d}{3\left(a+b+c+d\right)}=\frac{1}{3}\)
vậy M không phải là số tự nhiên
Do a;b;c và d là các số tự nhiên >0 =>
a + b + c < a + b + c + d
a + b + d < a + b + c + d
a + c + d < a + b + c + d
b + c + d < a + b + c + d
=> a/(a + b + c) > a/(a + b + c + d) (1)
b/(a + b + d) > b/(a + b + c + d) (2)
c/(b + c + d) > c/(a + b + c + d) (3)
d/(a + c + d) > d/(a + b + c + d) (4)
Từ (1);(2);(3) và (4)
=> a/(a + b + c) + b/(a + b + d) + c/(b + c + d) + d/(a + c + d) > a/(a + b + c + d) + b/(a + b + c + d) + c/(a + b + c + d) + d/(a + b + c + d)
=> a/(a + b + c) + b/(a + b + d) + c/(b + c + d) + d/(a + c + d) > (a + b + c + d)/(a + b + c + d)
=> a/(a + b + c) + b/(a + b + d) + c/(b + c + d) + d/(a + c + d) > 1
=> B > 1 (*)
Ta có: (a + b + c)(a + d) - a(a + b + c + d)
= a² + ad + ab + bd + ac + cd - (a² + ab + ac + ad)
= a² + ad + ab + bd + ac + cd - a² - ab - ac - ad
= bd + cd
Do a;b;c và d là số tự nhiên >0
=> bd + cd > 0
=> (a + b + c)(a + d) - a(a + b + c + d) > 0
=> (a + b + c)(a + d) > a(a + b + c + d)
=> (a + d)/(a + b + c + d) > a/(a + b + c) (5)
Chứng minh tương tự ta được:
(b + c)/(a + b + c + d) > b/(a + b + d) (6)
(a + c)/(a + b + c + d) > c/(b + c + d) (7)
(b + d)/(a + b + c + d) > d/(a + c + d) (8)
Cộng vế với vế của (5);(6);(7) và (8) ta được:
(a + d)/(a + b + c + d) + (b + c)/(a + b + c + d) + (a + c)/(a + b + c + d) + (b + d)/(a + b + c + d) > a/(a + b + c) + b/(a + b + d) + c/(b + c + d) + d/(a + c + d)
=> (a + d + b + c + a + c + b + d)/(a + b + c + d) > B
=> 2(a + b + c + d)/(a + b + c + d) > B
=> 2 > B (*)(*)
Từ (*) và (*)(*)
=> 1 < B < 2
=> B không phải là số tự nhiên
A = a/a+b+c + b/a+b+d + c/b+c+d + d/a+c+d
A > a/a+b+c+d + b/a+b+c+d + c/a+b+c+d + d/a+b+c+d
A > a+b+c+d/a+b+c+d
A > 1 (1)
Áp dụng a/b < 1 => a/b < a+m/b+m (a,b,m thuộc N*)
A = a/a+b+c + b/a+b+d + c/b+c+d + d/a+c+d
A < a+d/a+b+c+d + b+c/a+b+c+d + a+c/a+b+c+d + d+b/a+b+c+d
A < 2.(a+b+c+d)/a+b+c+d
A < 2 (2)
Từ (1) và (2) => 1 < A < 2
=> A không phải số nguyên ( đpcm)
Ta có: \(a,b,c,d\in N^{\times}\)nên:
\(\Rightarrow a+b+c< a+b+c+d\)
\(\Rightarrow\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\)
Tương tự ta có: \(\frac{b}{a+b+d}>\frac{b}{a+b+c+d}\)
Và: \(\frac{c}{a+c+d}>\frac{c}{a+b+c+d}\)
Và: \(\frac{d}{b+c+d}>\frac{d}{a+b+c+d}\)
\(\Rightarrow M>\frac{a+b+c+d}{a+b+c+d}=1\)
Lại có: \(a,b,c,d\in N^{\times}\) nên:
\(\Rightarrow a+b+c>a+b\)
\(\Rightarrow\frac{a}{a+b+c}< \frac{a}{a+b}\)
Tương tự ta có: \(\frac{b}{a+b+d}< \frac{b}{a+b}\)
Và: \(\frac{c}{a+c+d}< \frac{c}{c+d}\)
Và: \(\frac{d}{b+c+d}< \frac{d}{c+d}\)
\(\Rightarrow M< \frac{a+b}{a+b}+\frac{c+d}{c+d}=2\)
Vậy \(1< M< 2\) nên \(M\) không phải số tự nhiên.