Chứng minh :
a) \(313^5.299-313^6.35⋮7\)
b)\(3^{n+2}-2^{n+2}+3^n-2^n⋮10\)
c) \(3^{n+3}+2^{n+3}+3^{n+1}+2^{n+2}⋮6\)
d) \(7^6+7^5-7^4⋮11\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: \(=3^n\cdot\left(3^2+1\right)-2^n\cdot\left(2^2+1\right)\)
\(=3^n\cdot10-2^n\cdot5\)
\(=3^n\cdot10-2^{n-1}\cdot10⋮10\)
c: \(=3^n\left(3^2+3\right)+2^n\left(2^3+2^2\right)\)
\(=3^n\cdot12+2^n\cdot12⋮6\)
7^6+7^5+7^4 chia hết cho 11
= 7^4.2^2+7^4.7+7^4
= 7^4.(2^2+7+1)
= 7^4. 11
Vì tích này có số 11 nên => chia hết cho 7
Nguyễn Ngọc Quý sai ...= 7^6. ( 7-1+49)= 7^6.55 chia hết cho 11
\(b,3^{n+2}-2^{n+2}+3^n-2^n⋮10\)
Ta có: \(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=3^n.9-2^n.4+3^n-2^n\)
\(=3^n.10-2^n.5\)
Với: \(n\ge1\Rightarrow2^n⋮2\Rightarrow2^n.5⋮10\)
\(3^n.10⋮10\)
\(\Rightarrow3^n.10-2^n.5⋮10\)
\(\Rightarrow\)Ta có đpcm (viết ra cái đề ý)
\(d,7^6+7^5-7^4⋮11\)
Ta có: \(7^6+7^5-7^4=7^4\left(7^2+7-1\right)\)
\(=7^4\left(49+7-1\right)\)
\(=7^4.55\)
Trong tích có thừa số \(55⋮11\)
\(\Rightarrow\)Ta có đpcm (viết ra cái đề ý)