Tìm GTNN của các biểu thức :
a,A=|3x+1|+|x+2|-4x+3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^2-6x+10\)
\(\Leftrightarrow A=x^2-2\cdot x\cdot3+3^2-9+10\)
\(\Leftrightarrow A=\left(x-3\right)^2+1\ge1\) \(\forall x\in z\)
\(\Leftrightarrow A_{min}=1khix=3\)
\(B=3x^2-12x+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x\right)^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-12+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x-2\sqrt{3}\right)^2-11\ge-11\) \(\forall x\in z\)
\(\Leftrightarrow B_{min}=-11khix=2\)
\(A=x^4-2x^3+3x^2-4x+7\)
\(=\left(x^4-2x^3+x^2\right)+\left(2x^2-4x+2\right)+5\)
\(=\left(x^2-x\right)^2+2\left(x-1\right)^2+5\ge5\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x^2-x=0\\x-1=0\end{cases}\Rightarrow x=1}\)
Vậy \(A_{min}=5\Leftrightarrow x=1\)
em nghĩ chị nên mua cuốn: các phương pháp tính GTLN; GTNN của ts toán học nguyễn cảnh toàn (chủ biên)
bài nào chị cũng làm dc, thân ái
\(A=x^2-4x+1=x^2-4x+4-3=\left(x-2\right)^2-3\ge-3\)
\(\Rightarrow\)Min \(A=-3\)
Vậy.........
\(B=x^2-10x-3=x^2-10x+5^2-28=\left(x-5\right)^2-28\ge-28\)
\(\Rightarrow Min\)\(B=-28\)
Vậy.........
\(C=x^2-x-1=x^2-2x\frac{1}{2}+\left(\frac{1}{2}\right)^2-\frac{5}{4}=\left(x-\frac{1}{2}\right)^2-\frac{5}{4}\ge-\frac{5}{4}\)
\(\Rightarrow Min\)\(A=-\frac{5}{4}\)
Vậy.......
a: =-x^2+6x-4
=-(x^2-6x+4)
=-(x^2-6x+9-5)
=-(x-3)^2+5<=5
Dấu = xảy ra khi x=3
b: =3(x^2-5/3x+7/3)
=3(x^2-2*x*5/6+25/36+59/36)
=3(x-5/6)^2+59/12>=59/12
Dấu = xảy ra khi x=5/6
c: \(=-\left(x-3\right)^2+2\left|x-3\right|\)
\(=-\left[\left(\left|x-3\right|\right)^2-2\left|x-3\right|+1-1\right]\)
\(=-\left(\left|x-3\right|-1\right)^2+1< =1\)
Dấu = xảy ra khi x=4 hoặc x=2