cho (O) đường kính AB kẻ các dây cung BC và BD sao cho cung BC < cung BD (C và D không cùng thuộc nửa mặt phẳng) . đường tròn (O;OA/2) cắt AC và AD tại E và F
a) so sánh OE và OF
b) so sánh cung AE và cung AF của (O')
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác DAC và tam giác DBE có:
\(\left\{{}\begin{matrix}\widehat{ADC}=\widehat{BDE}\left(\text{đối đỉnh}\right)\\\widehat{DAC}=\widehat{DBE}\left(=\dfrac{1}{2}sđ\stackrel\frown{CE}\right)\end{matrix}\right.\)
\(\Rightarrow\Delta DAC\sim\Delta DBE\left(g.g\right)\)
\(\Rightarrow\dfrac{DA}{DC}=\dfrac{DB}{DE}\Rightarrow DA.DE=DB.DC\).
b) Ta có \(\widehat{FCB}=\widehat{FEA}=90^o\) nên tứ giác FCDE nội tiếp đường tròn đường kính FD.
c) Dễ thấy I là trung điểm của FD.
Từ đó tam giác ICD cân tại I.
Dễ thấy D là trực tâm của tam giác FAB nên \(FD\perp AB\). Ta có: \(\widehat{ICD}=\widehat{IDC}=90^o-\widehat{AFD}=\widehat{BAC}=\dfrac{1}{2}sđ\stackrel\frown{BC}\) nên IC là tiếp tuyến của (O).
Trả lời:
a) (O′) có OA là đường kính và E(O′) nên OE⊥AC
Tương tự với (O) ta có BC⊥AC nên OE//BC mà OO là trung điểm của AB
⇒E là trung điểm của AC⇒ OE=12BC.
Tương tự OF=12DB mà cung BC bằng cung BD nên BC=BD⇒OE=OF hay cung OE= cung OF.
~Học tốt!~