K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2021

S A B C M N K H

Ta có \(SA\perp\left(ABC\right)\Rightarrow SA\perp BC;SA\perp AB\) Mà \(BC\perp AB\Rightarrow BC\perp\left(SAB\right)\Rightarrow BC\perp SB\) => tg SAB là tg vuông tại B

Xét tg vuông SAB có

\(SB=\sqrt{SA^2+AB^2}=\sqrt{4a^2+a^2}=a\sqrt{5}\)

\(\Rightarrow S_{SBC}=\frac{SB.BC}{2}=\frac{a\sqrt{5}.a\sqrt{3}}{2}=\frac{a^2\sqrt{15}}{2}\)

Trong mp(SBC) dựng \(NK\perp SB\)(K thuộc SB) mà \(BC\perp SB\) => NK//BC

Ta có NS=NC

=> NK là đường trung bình của \(\Delta SBC\Rightarrow NK=\frac{BC}{2}=\frac{a\sqrt{3}}{2}\)

Ta có \(2SM=MB\Rightarrow SM=\frac{MB}{2}\Rightarrow SM=\frac{SB}{3}=\frac{a\sqrt{5}}{3}\)

\(\Rightarrow S_{SMN}=\frac{SM.NK}{2}=\frac{1}{2}.\frac{a\sqrt{5}}{3}.\frac{a\sqrt{3}}{2}=\frac{a^2\sqrt{15}}{12}\)

\(\Rightarrow S_{MNBC}=S_{SBC}-S_{SMN}=\frac{a^2\sqrt{15}}{2}-\frac{a^2\sqrt{15}}{12}=\frac{5a^2\sqrt{15}}{12}\)

Trong mp(SAB) từ A dựng đường thẳng \(AH\perp SB\) (H thuộc SB)

Ta có \(BC\perp\left(SAB\right)\Rightarrow BC\perp AH\)

\(\Rightarrow AH\perp\left(SBC\right)\) => AH là đường cao của hình chóp A.MNBC

Xét tg vuông SAB có

\(AB^2=BH.SB\Rightarrow BH=\frac{AB^2}{SB}=\frac{a^2}{a\sqrt{5}}=\frac{a\sqrt{5}}{5}\)

Xét tg vuông ABH có

\(AH=\sqrt{AB^2-BH^2}=\sqrt{a^2-\frac{5a^2}{25}}=\frac{2a\sqrt{5}}{5}\)

\(\Rightarrow S_{A.MNBC}=\frac{1}{3}.S_{MNBC}.AH=\frac{1}{3}.\frac{5a^2\sqrt{15}}{12}.\frac{2a\sqrt{5}}{5}=\frac{5a^3\sqrt{3}}{18}\)

18 tháng 10 2021

nguyễn ngọc anh đúng

1 tháng 7 2018

15 tháng 5 2019

29 tháng 7 2018

Đáp án B

Kẻ đường cao SH trong Δ S A B ⇒ A H ⊥ A B C .

Δ S A B đều  ⇒ A H = 2. a 3 2 = a 3

Diện tích tam giác:  A B C = 1 2 . 2 a 2 = 2 a 2

⇒ V S . A B C = 1 3 S H . d t A B C = 1 3 a 3 .2 a 2 = 2 a 3 3 3

Ta có:  V S . A M N V S . A B C = S M S B . S N S C = 1 2 . 1 3 = 1 6

⇒ V S . A M N = V S . A B C 6 = 2 a 3 3 3.6 = a 3 3 9

7 tháng 4 2016

A E M B C H N S

Xét tam giác ABC có : \(BC=AB.\tan60^0=2a\sqrt{3}\Rightarrow S_{\Delta ABC}=2a^2\sqrt{3}\)

\(V_{S.ABCD}=\frac{1}{3}SA.S_{\Delta ABC}=\frac{1}{3}a\sqrt{3}.2a^2\sqrt{3}=2a^3\)

- Gọi N là trung điểm cạnh SA. Do SB//(CMN) nên d(SB. CM)=d(SB,(CMN))

                                                                                                 =d(B,(CMN))

                                                                                                 =d(A,(CMN))

- Kẻ \(AE\perp MC,E\in MC\) và kẻ \(AH\perp NE,H\in NE\), ta chứng minh được \(AH\perp\left(CMN\right)\Rightarrow d\left(A,\left(CMN\right)\right)=AH\)

Tính \(AE=\frac{2S_{\Delta AMC}}{MC}\) trong đó :

                              \(S_{\Delta AMC}=\frac{1}{2}AM.AC.\sin\widehat{CAM}=\frac{1}{2}a.4a\frac{\sqrt{3}}{2}=a^2\sqrt{3};MC=a\sqrt{13}\)

                             \(\Rightarrow AE=\frac{2a\sqrt{3}}{\sqrt{13}}\)

Tính được \(AH=\frac{2a\sqrt{3}}{\sqrt{29}}\Rightarrow d\left(A,\left(CMN\right)\right)=\frac{2a\sqrt{3}}{\sqrt{29}}\Rightarrow d\left(SB,CM\right)=\frac{2a\sqrt{3}}{\sqrt{29}}\)

NV
2 tháng 4 2023

a.

Do \(\left\{{}\begin{matrix}SA\perp\left(ABC\right)\Rightarrow SA\perp BC\\AB\perp BC\left(gt\right)\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAB\right)\)

\(\Rightarrow BC\perp SB\)

b.

\(SA\perp\left(ABC\right)\Rightarrow AC\) là hình chiếu vuông góc của SC lên (ABC)

\(\Rightarrow\widehat{SCA}\) là góc giữa SC và (ABC)

\(AC=\sqrt{AB^2+BC^2}=a\sqrt{2}\)

\(\Rightarrow tan\widehat{SCA}=\dfrac{SA}{AC}=1\Rightarrow\widehat{SCA}=45^0\)

22 tháng 10 2019

Đáp án A

Xét tam giác SAC vuông tại A có AP là đường cao, ta có:

1 tháng 11 2017

Bài 5. Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông cạnh a. Mặt bên hợp với đáy một góc  . Tính VS ABCD . theo a và  . Bài 6. Tính thể tích khối chóp tứ giác đều S.ABCD có cạnh đáy bằng a và góc ASB = α . Áp dụng: Tính VS ABCD . trong trường hợp α = 60 độ. Bài 7. Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, góc ABC =120độ . Cho SA vuông góc với đáy và SC = 2a .Tính thể tích...
Đọc tiếp

Bài 5. Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông cạnh a. Mặt bên hợp với đáy một góc  . Tính VS ABCD . theo a và  . Bài 6. Tính thể tích khối chóp tứ giác đều S.ABCD có cạnh đáy bằng a và góc ASB = α . Áp dụng: Tính VS ABCD . trong trường hợp α = 60 độ.

Bài 7. Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, góc ABC =120độ . Cho SA vuông góc với đáy và SC = 2a .Tính thể tích hình chóp S.ABCD.

Bài 8. Cho hình chóp S.ABCD có đáy ABCD là một hình thang cân (AB//CD) với AC=20 cm BC=15 cm AB=25 cm . Cho SA vuông góc với đáy và SA =18cm . Tính thể tích của khối chóp.

Bài 9. Cho hình chóp S.ABC có SA vuông góc với đáy. Mặt bên SBC là tam giác đều cạnh a. Cho gócBAC =120 . Tính VS ABC .

. Bài 10. Cho khối chóp S.ABC có đường cao SA bằng a, đáy là tam giác vuông cân có AB= BC= a . Gọi B' là trung điểm của SB, C' là chân đường cao hạ từ A của tam giác S.ABC:

a.Tính thể tích khối chóp S.ABC

b.Chứng minh SC vuông góc với (AB'C')

c.Tính thể tích khối chóp S.ABC

0
17 tháng 10 2019

Đáp án D

Gọi d là tiếp tuyến của (C) tại điểm A(1:0). 

Ta có: y ' = 3 x 2 − 6 x ⇒ y ' 1 = 3.  

Suy ra:  d : − 3 x − 1 + 0 ⇔ y = − 3 x + 3.

9 tháng 1 2019

Đáp án C

Ta có ∆ A B C  vuông cân tại B nên M là tâm đường tròn ngoại tiếp. S M = S B = S C ⇒ S M ⊥ ( A B C )  

F E ∩ A B = K  , kẻ F G / / B A   F H   / / S M ⇒ F H ⊥ ( A B C )  ta có: F H = 2 3 S M = 2 3 S A 2 - A M 2 = 2 3 12 2 - 8 = 4 3 34  

d t K M N = d t B N M K - d t B N K = 1 2 ( M N + B K ) . B N - 1 2 M N . B N = 1 2 . 2 . 2 = 2

∆ F G E = ∆ K A E ( C . G . C ) ⇒ F E = 1 2 F K

V F M N E V F M N K = F E F K = 1 2 ⇒ V F M N E = 1 2 V F M N K = 1 2 . 1 3 . F H . d t K M N = 1 6 . 4 3 34 . 2 = 4 34 9