Cho a,b,c >0
Chứng minh: \(\frac{1}{a^2+b^2+abc}+\frac{1}{b^2+c^2+abc}+\frac{1}{c^2+a^2+abc}\ge\frac{1}{abc}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a+b+c=abc\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)
Đặt \(\left(\frac{1}{a},\frac{1}{b},\frac{1}{c}\right)=\left(x,y,z\right)\Rightarrow xy+yz+zx=1\)
WLOG \(z\ge y\ge x\)
\(\Rightarrow VT=\frac{x}{\sqrt{y^2+1}}+\frac{y}{\sqrt{z^2+1}}+\frac{z}{\sqrt{x^2+1}}\)
Biến doi \(\sqrt{y^2+1}=\sqrt{y^2+xy+yz+zx}\)
Còn lại tương tự.
Theo bđt Holder:\(VT.VT.\left[\Sigma_{cyc}x\left(y^2+xy+yz+zx\right)\right]\ge\left(x+y+z\right)^3\)
\(\Rightarrow VT^2\ge\frac{\left(x+y+z\right)^3}{xy\left(x+2y\right)+yz\left(y+2z\right)+zx\left(z+2x\right)}\)
Giờ cần chứng minh: \(\frac{\left(x+y+z\right)^3}{xy\left(x+2y\right)+yz\left(y+2z\right)+zx\left(z+2x\right)}\ge\frac{9}{4}\)
\(\Leftrightarrow4\left(x^3+y^3+z^3\right)+3\left(x^2y+y^2z+z^2x\right)\ge6\left(xy^2+yz^2+zx^2\right)+3xyz\)
bđt cuối tương đương
\(\frac{1}{6}\left[\Sigma_{cyc}\left(5x+7y+3z\right)\left(x-y\right)^2\right]+3\left(x-y\right)\left(y-z\right)\left(z-x\right)\ge0\)
Đứng với cái mình đã WLOG ở trên
Mình nghĩ bài này có điều kiện a, b,c > 0.
Bạn nub đánh nhầm đoạn" \(VT^2\ge\frac{\left(x+y+z\right)^3}{..}\) ..Cần chứng minh..." rồi nhé, nhưng bất đẳng thức cần chứng minh cuối cùng vẫn đúng: \(4\left(x^3+y^3+z^3\right)+3\left(x^2y+y^2z+z^2x\right)\ge6\left(xy^2+yz^2+zx^2\right)+3xyz\)
Nhưng:
\(VT-VP=\frac{\Sigma\left(6xy+4y^2+yz+\frac{5}{2}z^2\right)\left(x-y\right)^2}{x+y+z}\ge0\)
Đúng vì x, y, z > 0 do a, b, c > 0.
bài 2
(bài này là đề thi olympic Toán,Ireland 1997),nhưng cũng dễ thôi
Giả sử ngược lại \(a^2+b^2+c^2< abc\)
khi đó \(abc>a^2+b^2+c^2>a^2\)nên \(a< bc\)
Tương tự \(b< ac,c< ab\)
Từ đó suy ra :\(a+b+c< ab+bc+ac\left(1\right)\)
mặt khác ta lại có:\(a^2+b^2+c^2\ge ab+bc+ac\)nên
\(abc>a^2+b^2+c^2\ge ab+bc+ac\)
\(\Rightarrow abc>ab+ac+bc\left(2\right)\)
Từ (1),(2) ta có\(abc>a+b+c\)(trái với giả thuyết)
Vậy bài toán được chứng minh
3)để đơn giản ta đặt \(x=\frac{1}{a},y=\frac{1}{b},z=\frac{1}{c}\).Khi đó \(x,y,z>0\)
và \(xy+yz+xz\ge1\)
ta phải chứng minh có ít nhất hai trong ba bất đẳng thức sau đúng
\(2x+3y+6z\ge6,2y+3z+6x\ge6,2z+3x+6y\ge6\)
Giả sử khẳng định này sai,tức là có ít nhất hai trong ba bất đẳng thức trên sai.Không mất tính tổng quát,ta giả sử
\(2x+3y+6z< 6\)và \(2y+3z+6x< 6\)
Cộng hai bất đẳng thức này lại,ta được:\(8x+5y+9z< 12\)
Từ giả thiết \(xy+yz+xz\ge1\Rightarrow x\left(y+z\right)\ge1-yz\)
\(\Rightarrow x\ge\frac{1-yz}{y+z}\)Do đó
\(8\frac{1-yz}{y+z}+5y+9z< 12\Leftrightarrow8\left(1-yz\right)+\left(5y+9z\right)\left(y+z\right)< 12\left(y+z\right)\)
\(\Leftrightarrow5y^2+6yz+9z^2-12y-12z+8< 0\)
\(\Leftrightarrow\left(y+3z-2\right)^2+4\left(y-1\right)^2< 0\)(vô lý)
mâu thuẫn này chứng tỏ khẳng định bài toán đúng.Phép chứng minh hoàn tất.
Agami Raito đề sai nha bạn, mình có đề khác cũng gần giống, bạn xem thử :
\(\frac{1}{a^3+b^3+1}+\frac{1}{b^3+c^3+1}+\frac{1}{a^3+c^3+1}\le1\)
Giả thiết như trên nhé
\(VT=\frac{\left(\sqrt[3]{abc}\right)^2}{2abc}+\Sigma\frac{a^2}{a^2\left(b+c\right)}\ge\frac{\left(a+b+c+\sqrt[3]{abc}\right)^2}{\Sigma a^2\left(b+c\right)+2abc}=\frac{\left(a+b+c+\sqrt[3]{abc}\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
Đặt \(A=\left(\frac{a}{a^2b^2+a^2+1}\right)^2+\left(\frac{b}{b^2c^2+b^2+1}\right)^2+\left(\frac{c}{c^2a^2+c^2+1}\right)^2\)
Cần cm : \(B=\frac{1}{a^2b^2+a^2+1}+\frac{1}{b^2c^2+b^2+1}+\frac{1}{a^2c^2+c^2+1}=1\)
\(B=\frac{a^2b^2c^2}{a^2b^2+a^2+a^2b^2c^2}+\frac{1}{b^2c^2+b^2+1}+\frac{a^2b^2c^2}{a^2c^2+a^2b^2c^3+a^2b^2c^2}\) (Do \(abc=1\))
\(=\frac{b^2c^2}{b^2c^2+b^2+1}+\frac{1}{b^2c^2+b^2+1}+\frac{b^2}{b^2c^2+b^2+1}=\frac{b^2c^2+b^2+1}{b^2c^2+b^2+1}=1\)(đúng)
Ta có : \(A=\frac{\frac{1}{\left(a^2b^2+a^2+1\right)^2}}{a^2}+\frac{\frac{1}{\left(b^2c^2+b^2+1\right)^2}}{b^2}+\frac{\frac{1}{\left(c^2a^2+c^2+1\right)^2}}{c^2}\)
\(\ge\frac{\left(\frac{1}{a^2b^2+a^2+1}+\frac{1}{b^2c^2+b^2+1}+\frac{1}{a^2c^2+c^2+1}\right)^2}{a^2+b^2+c^2}=\frac{B^2}{a^2+b^2+c^2}=\frac{1}{a^2+b^2+c^2}\)(đpcm)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)
phân thức thức thứ 3 dòng thứ 3 ở mẫu là \(a^2c^2+a^2b^2c^4+a^2b^2c^2\)chứ bạn nhỉ????
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{3}{\sqrt[3]{abc}}\)
Ta cần chứng minh \(\frac{3}{\sqrt[3]{abc}}\ge\frac{9}{abc+2}\Leftrightarrow abc+2\ge3\sqrt[3]{abc}\)
BĐT trên luôn đúng theo AM-GM vì: \(abc+2=abc+1+1\ge3\sqrt[3]{abc}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Lời giải:
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{2\sqrt[3]{abc}}=\frac{c^2}{c^2(a+b)}+\frac{a^2}{a^2(b+c)}+\frac{b^2}{b^2(c+a)}+\frac{(\sqrt[3]{abc})^2}{2abc}\)
\(\geq \frac{(c+a+b+\sqrt[3]{abc})^2}{c^2(a+b)+a^2(b+c)+b^2(c+a)+2abc}=\frac{(a+b+c+\sqrt[3]{abc})^2}{(a+b)(b+c)(c+a)}\)
Ta có đpcm
Dấu "=" xảy ra khi $a=b=c$
Nhìn sơ qua hình như bài có thiếu đk gì đó...