K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 1 2020

Bấm máy may mắn ra nghiệm đẹp

Đk: \(-1\le x\le\frac{5}{2}\)

PT <=> \(6x^2+20x+2\sqrt{3x+3}=2x^3+52+2\sqrt{5-2x}\)

<=> \(\left[2\sqrt{3x+3}-\left(4+x\right)\right]+6x^2+23x=2x^3+2\left[\sqrt{5-2x}-\left(3-x\right)\right]+54\)

Xét \(-1\le x\) => \(2\sqrt{3x+3}+4+x\ge0+4-1=3>0\)

Xét \(-1\le x\le\frac{5}{2}\) => \(\frac{1}{2}\le\sqrt{5-2x}+3-x\le\sqrt{7}+4\) => \(\sqrt{5-2x}+3-x\ne0\)

Pt <=> \(\frac{4\left(3x+3\right)-\left(4+x\right)^2}{2\sqrt{3x+3}+4+x}+6x^2+23x=2x^3+2.\frac{5-2x-\left(3-x\right)^2}{\sqrt{5-2x}+3-x}+54\)

<=>\(\frac{-x^2+4x-4}{2\sqrt{3x+3}+4x+}-2.\frac{-x^2+4x-4}{\sqrt{5-2x}+3-x}-\left(2x^3-6x^2-23x+54\right)=0\)

<=> \(\frac{-\left(x-2\right)^2}{2\sqrt{3x+3}+4+x}+\frac{2\left(x-2\right)^2}{\sqrt{5-2x}+3-x}-\left(x-2\right)\left(2x^2-2x-27\right)=0\)

<=>\(\left(x-2\right)\left[\frac{-\left(x-2\right)}{2\sqrt{3x+3}+4+x}+\frac{2\left(x-2\right)}{\sqrt{5-2x}+3-x}-2x^2+2x+27\right]=0\)

<=>\(\left[{}\begin{matrix}x-2=0\left(1\right)\\-\frac{\left(x-2\right)}{2\sqrt{3x+3}+4+x}+\frac{2\left(x-2\right)}{\sqrt{5-2x}+3-x}-2x^2+2x+27=0\left(2\right)\end{matrix}\right.\)

Từ (1)=> x=2(t/m pt)

Chắc chắn (2) vô nghiệm nhưng chưa biết CM

------------------------------------------------------------------

Đau mắt quá thì chuyển qua liên hợp kiểu này đi(dễ hơn)

pt <=> \(\left(\sqrt{3x+3}-3\right)-\left(\sqrt{5-2x}-1\right)+3x^2+10x-x^3-24=0\)

Luôn có \(\left\{{}\begin{matrix}\sqrt{3x+3}+3>0\\\sqrt{5-2x}+1>0\end{matrix}\right.\) với mọi x

pt <=> \(\frac{3x+3-9}{\sqrt{3x+3}+3}-\frac{5-2x-1}{\sqrt{5-2x}+1}-\left(x-2\right)\left(x+3\right)\left(x-4\right)=0\)

<=>\(\frac{3\left(x-2\right)}{\sqrt{3x+3}+3}+\frac{2\left(x-2\right)}{\sqrt{5-2x}+1}-\left(x-2\right)\left(x+3\right)\left(x-4\right)=0\)

<=>\(\left(x-2\right)\left[\frac{3}{\sqrt{3x+3}+3}+\frac{2}{\sqrt{5-2x}+1}-\left(x+3\right)\left(x-4\right)\right]=0\)

<=>\(\left[{}\begin{matrix}x=2\left(tm\right)\\\frac{3}{\sqrt{3x+3}+3}+\frac{2}{\sqrt{5-2x}+1}-\left(x+3\right)\left(x-4\right)=0\left(1\right)\end{matrix}\right.\)

(1) <=>\(\frac{3}{\sqrt{3x+3}+3}+\frac{2}{\sqrt{5-2x}+1}=\left(x+3\right)\left(x-4\right)\)

Tại \(-1\le x\le\frac{5}{2}\)=> \(-10\le\left(x+3\right)\left(x-4\right)\le-\frac{33}{4}< 0\)

=> Vế phải của (1) luôn âm

Xét vế trái của (1) có: \(\left\{{}\begin{matrix}\sqrt{3x+3}+3>0\\\sqrt{5-2x}+1>0\end{matrix}\right.\)=> \(\left\{{}\begin{matrix}\frac{3}{\sqrt{3x+3}+3}>0\\\frac{2}{\sqrt{5-2x}+1}>0\end{matrix}\right.\)=> \(\frac{3}{\sqrt{3x+3}+3}+\frac{2}{\sqrt{5-2x}+1}>0\)

=> Vế trái của (1) luôn dương hay (1) vô nghiệm

Vậy pt có 1 nghiệm duy nhất x=2

24 tháng 1 2022

giúp em với

 

NV
25 tháng 1 2022

ĐKXĐ: \(-1\le x\le\dfrac{5}{2}\)

\(\Leftrightarrow\sqrt{3x+3}-3+1-\sqrt{5-2x}=x^3-3x^2-10x+24\)

\(\Leftrightarrow\dfrac{3\left(x-2\right)}{\sqrt{3x+3}+3}+\dfrac{2\left(x-2\right)}{1+\sqrt{5-2x}}=\left(x-2\right)\left(x-4\right)\left(x+3\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\\dfrac{3}{\sqrt{3x+3}+3}+\dfrac{2}{1+\sqrt{5-2x}}=\left(x-4\right)\left(x+3\right)\left(1\right)\end{matrix}\right.\)

Xét (1), ta có:

\(\dfrac{3}{\sqrt{3x+3}+3}+\dfrac{2}{1+\sqrt{5-2x}}>0\)

\(-1\le x\le\dfrac{5}{2}\Rightarrow\left\{{}\begin{matrix}x+3>0\\x-4< 0\end{matrix}\right.\) \(\Rightarrow\left(x+3\right)\left(x-4\right)< 0\)

\(\Rightarrow\left(1\right)\) vô nghiệm hay pt có nghiệm duy nhất \(x=2\)

27 tháng 1 2022

Em cảm ơn

X=2

~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~

 ~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~ Và chúc các bạn trả lời câu hỏi này kiếm được nhiều k hơn ~~~~~~~~~~~~

X=2 nha bạn

~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~

 ~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~ Và chúc các bạn trả lời câu hỏi này kiếm được nhiều k hơn ~~~~~~~~~~~~

em mới học lớp 6 nên bài này em không làm được anh thông cảm cho em nhé

21 tháng 6 2015

ĐK: 3x + 3 \(\ge\)0 ; 5 - 2x \(\ge\) 0 => -1 \(\le\) x \(\le\frac{5}{2}\)

pt <=> \(\left(\sqrt{3x+3}-3\right)+\left(1-\sqrt{5-2x}\right)=x^3-2x^2-x^2+2x-12x+24\)

<=> \(\frac{3x-6}{\sqrt{3x+3}+3}+\frac{-4+2x}{1+\sqrt{5-2x}}=x^2\left(x-2\right)-x\left(x-2\right)-12\left(x-2\right)\)

<=> \(\frac{3\left(x-2\right)}{\sqrt{3x+3}+3}+\frac{2\left(x-2\right)}{1+\sqrt{5-2x}}-\left(x-2\right)\left(x^2-x-12\right)=0\)

<=> \(\left(x-2\right)\left(\frac{3}{\sqrt{3x+3}+3}+\frac{2}{1+\sqrt{5-2x}}-\left(x^2-x-12\right)\right)=0\)

<=> x - 2 = hoặc \(\frac{3}{\sqrt{3x+3}+3}+\frac{2}{1+\sqrt{5-2x}}-\left(x^2-x-12\right)=0\)(*)

Nhận xét : x2 - x - 12 = (x - 4).(x+3) < 0 <=> -3 < x < 4

=> Với điều kiện  -1 \(\le\) x \(\le\frac{5}{2}\) thì x2 - x - 12  < 0 => - (x2 - x - 12 ) > 0

Do đó: \(\frac{3}{\sqrt{3x+3}+3}+\frac{2}{1+\sqrt{5-2x}}-\left(x^2-x-12\right)>0\)với mọi -1 \(\le\) x \(\le\frac{5}{2}\) 

=> (*) vô nghiệm

Vậy PT đã cho có nghiệm duy nhất x = 2

 

 

Bài 1:

Ta có: \(\left(3\sqrt{50}-5\sqrt{18}+3\sqrt{8}\right)\cdot\sqrt{2}\)

\(=\left(15\sqrt{2}-15\sqrt{2}+6\sqrt{2}\right)\cdot\sqrt{2}\)

\(=6\sqrt{2}\cdot\sqrt{2}\)

=12

Bài 2: 

1) ĐKXĐ: \(x\le0\)

2) ĐKXĐ: \(x\le2\)

3) ĐKXĐ: \(x>\dfrac{-3}{2}\)

4) ĐKXĐ: x>0

5) ĐKXĐ: x<3