K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2016

Ta có a2 - (b - c) <= a2 

<=>(a+b-c)(a-b+c) <= a2

Tương tự

(b-c+a)(b-a+c) <= b2

(c-a+b)(c-b+a) <= c2

Từ đó ta có (b-c+a)2(b-a+c)2(c-b+a)2 <= a2 bc2

<=> (c-b+a)(b-c+a)(b-a+c) <= abc (nhân vô chuyển vế nha)

<=> (a2 b + a2 c) + (b2 a + bc) + (c2 a + cb) <= a+ b+ c+ 3abc

<=> a2 (a+b+c) + b2 (a+b+c) + c(a+b+c) <= 2(a+ b+ c3) + 3abc ( cộng 2 vế cho  

Ta có a2 - (b - c) <= a2 

<=>(a+b-c)(a-b+c) <= a2

Tương tự

(b-c+a)(b-a+c) <= b2

(c-a+b)(c-b+a) <= c2

Từ đó ta có (b-c+a)2(b-a+c)2(c-b+a)2 <= a2 bc2

<=> (c-b+a)(b-c+a)(b-a+c) <= abc

<=> (a2 b + a2 c) + (b2 a + bc) + (c2 a + cb) <= a+ b+ c+ 3abc

<=> a2 (a+b+c) + b2 (a+b+c) + c(a+b+c) <= 2(a+ b+ c3) + 3abc (cộng 2 vế cho  a+ b+ c3)

<=> a+ b+ c<= 2(a+ b+ c) + 3abc

Xong

24 tháng 2 2017

a=b=c=1 sai

24 tháng 2 2017

Xem lại cái đề: 

NV
21 tháng 3 2022

Do \(a^3+b^3+c^3=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

Nên BĐT tương đương:

\(\left(a+b+c\right)^2\left(a^2+b^2+c^2-ab-bc-ca\right)^2\le\left(a^2+b^2+c^2\right)^3\)

Đặt \(\left\{{}\begin{matrix}a^2+b^2+c^2=x\\ab+bc+ca=y\end{matrix}\right.\) với \(\left\{{}\begin{matrix}x\ge0\\x\ge y\end{matrix}\right.\)

BĐT tương đương:

\(\left(x+2y\right)\left(x-y\right)^2\le x^3\)

\(\Leftrightarrow x^3-3xy^2+2y^3\le x^3\)

\(\Leftrightarrow y^2\left(3x-2y\right)\ge0\)

Hiển nhiên đúng do \(3x-2y=x+2\left(x-y\right)\ge0\)

Đẳng thức xảy ra khi và chỉ khi \(ab+bc+ca=0\)

NV
13 tháng 11 2021

BĐT cần c/m tương đương:

\(2\left(a^3+b^3+c^3+d^3\right)\ge2+\dfrac{3}{2}\sqrt{4+2\left(ab+ac+ad+bc+bd+cd\right)}\)

\(\Leftrightarrow2\left(a^3+b^3+c^3+d^3\right)\ge2+\dfrac{3}{2}\sqrt{\left(a+b+c+d\right)^2}\)

\(\Leftrightarrow2\left(a^3+b^3+c^3+d^3\right)\ge2+\dfrac{3}{2}\left(a+b+c+d\right)\)

\(\Leftrightarrow4\left(a^3+b^3+c^3+d^3\right)\ge4+3\left(a+b+c+d\right)\)

Dễ dàng chứng minh điều này bằng AM-GM:

\(a^3+a^3+1+b^3+b^3+1+c^3+c^3+1+d^3+d^3+1\ge3a^2+3b^2+3c^2+3d^2\)

\(\Rightarrow2\left(a^3+b^3+c^3+d^3\right)+4\ge12\)

\(\Rightarrow a^3+b^3+c^3+d^3\ge4\) (1)

Lại có:

\(a^2+b^2+c^2+d^2\ge\dfrac{1}{4}\left(a+b+c+d\right)^2\)

\(\Rightarrow a+b+c+d\le4\) (2)

(1);(2) \(\Rightarrow4\left(a^3+b^3+c^3+d^3\right)\ge16\ge4+3.4\ge4+3\left(a+b+c+d\right)\) (đpcm)

21 tháng 8 2017

Áp dụng BĐT Mincopski ta có:

\(VT=\sqrt{a^2+\left(1-b\right)^2}+\sqrt{b^2+\left(1-c\right)^2}+\sqrt{c^2+\left(1-b\right)^2}\)

\(\ge\sqrt{\left(a+b+c\right)^2+\left(3-a-b-c\right)^2}\)

Đặt \(a+b+c=x>0\) thì ta có:

\(\ge\sqrt{x^2+\left(3-x\right)^2}=\sqrt{2x^2-6x+9}\)

\(=\sqrt{2\left(x-\frac{3}{2}\right)^2+\frac{9}{2}}\ge\sqrt{\frac{9}{2}}=\frac{3\sqrt{2}}{2}\)

NV
5 tháng 5 2021

a.

\(\Leftrightarrow2a^2b^2+2b^2c^2+2c^2a^2\ge2abc\left(a+b+c\right)\)

\(\Leftrightarrow\left(a^2b^2-2a^2bc+c^2a^2\right)+\left(a^2b^2-2ab^2c+b^2c^2\right)+\left(b^2c^2-2abc^2+a^2c^2\right)\ge0\)

\(\Leftrightarrow\left(ab-ca\right)^2+\left(ab-bc\right)^2+\left(bc-ca\right)^2\ge0\) (luôn đúng)

Vậy BĐT đã cho đúng

b.

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)\ge3abc\left(a+b+c\right)\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2\ge abc\left(a+b+c\right)\) (đúng theo câu a đã chứng minh)