Cho tam giác ABC cân ở A,điểm E nằm giữa A và B.So sánh EC và EB
giúp mk nha mk cần rất gấp please!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì tam giác ABc cân tại A
=>\(\widehat{ABC}=\widehat{ACB}\)( tính chất ) hay \(\widehat{EBC}=\widehat{ACB}\)
Có \(\widehat{EBC}=\widehat{ACB}\)
\(\widehat{ECB}< \widehat{ACB}\)( vì \(\widehat{ECB}\varepsilon\widehat{ACB}\))
=> \(\widehat{EBC}>\widehat{ECB}\)
Xét tam giác EBC có
\(\widehat{EBC}>\widehat{ECB}\) ( cmt)
=> EB > EC ( quan hệ góc - cạnh trong tam giác )
Dùng định lý Pitago để chứng minh nhé
trong tam giác vuông AHC ta có:
\(AC^2=AH^2+HC^2\)(1)
Trong tam giác vuông MHC, ta có:
\(MC^2=MH^2+HC^2\)(2)
tỪ (1) VÀ (2) =>
\(AC^2=AH^2+HC^2\)
\(MC^2=MH^2+HC^2\)
Mà ta có: HC=HC và AH<MH vì M là điểm giữa và AM+MH=AH
=> \(AC^2>MC^2\Rightarrow AC>MC\)
Kẽ EG, FK lần lược vuông góc với BC tại G và K
Xét \(\Delta EBG\&\Delta FCK\)có
\(\hept{\begin{cases}EB=CF\\\widehat{EGB}=\widehat{FKC}\\\widehat{EBG}=\widehat{FCK}\left(=\widehat{ACB}\right)\end{cases}}\)
\(\Rightarrow\Delta EBG=\Delta FCK\)
\(\Rightarrow EG=FK\)
Xét \(\Delta EGI\&\Delta FKI\)có
\(\hept{\begin{cases}\widehat{EGI}=\widehat{FKI}\\\widehat{EIG}=\widehat{FIK}\\EG=FK\end{cases}}\)
\(\Rightarrow\Delta EGI=\Delta FKI\)
\(\Rightarrow EI=FI\)
Vậy BC đi qua trung điểm của EF
Bài 1:
Cm: Do Bx nằm giữa tia BA và BC nên \(\widehat{ABx}+\widehat{xBC}=\widehat{B}\)
=> \(\widehat{xBC}< \widehat{B}\) hay \(\widehat{DBC}< \widehat{B}\)(1)
D là điểm nằm ngoài t/giác ABC => tia CA nằm giữa CB và CD
=> \(\widehat{BCA}+\widehat{ACD}=\widehat{BCD}\)
=> \(\widehat{BCA}< \widehat{BCD}\) (2)
Mà \(\widehat{B}=\widehat{BCA}\) (Vì t/giác ABC cân tại A) (3)
Từ (1); (2); (3) => \(\widehat{DBC}< \widehat{BCD}\)
=> DC < BD (quan hệ giữa cạnh và góc đối diện)
Rất Sorry bạn nha.Mik mới nghĩ ra câu a,b thôi,còn câu c thì mik cần thời gian:(
Bạn tự chứng minh bổ đề đường trung bình nha.
a.
Do N là trung điểm của DE;I là trung điểm của BE nên NI là đường trung bình của tam giác BDE nên:
\(IN=\frac{1}{2}BD\left(1\right)\)
Mặt khác:M là trung điểm của BC,I là trung điểm của BE nên MI là đường trung bình của tam giác BEC nên:
\(IM=\frac{1}{2}EC\left(2\right)\)
Mà \(BD=EC\) nên từ (1);(2) suy ra \(IN=MI\Rightarrow\Delta IMN\) cân tại I.
b.
Do IN là đường trung bình nên \(IN//AB\Rightarrow\widehat{APQ}=\widehat{INM}\left(3\right)\)
Do IM là đường trung bình nên \(IM//EC\Rightarrow\widehat{AQP}=\widehat{IMN}\left(4\right)\)
Từ (3);(4) suy ra \(\widehat{APQ}=\widehat{AQP}\Rightarrow\Delta APQ\) cân tại A.
Xét \(\Delta ABD\)có \(\widehat{A}\)tù \(\Rightarrow BA< BD\)(1); \(\widehat{ADB}< 90^o\)
\(\Rightarrow\widehat{BDE}>90^o\)\(\Rightarrow\Delta BDE\)tù tại D \(\Rightarrow BD< BE\)(2); \(\widehat{BED}< 90^o\)
\(\Rightarrow\widehat{BEC}>90^o\)\(\Rightarrow\Delta BEC\)tù tại E \(\Rightarrow BE< BC\)(3)
Từ (1), (2), (3) \(\Rightarrow BA< BD< BE< BC\left(đpcm\right)\)
a) Vì hình thang DEFB có: DE // BF
=> DB = EF
mà AD = DB (D là trung điểm của AB)
=> EF = AD
b) Xét \(\Delta ADEvà\Delta EFCcó:\)
\(\widehat{A}=\widehat{FEC}\)(đồng vị)
AD = EF (cmt)
\(\widehat{ADE}=\widehat{EFC}\) (=\(\widehat{B}\) )
Do đó: \(\Delta ADE=\Delta EFC\left(g-c-g\right)\)
c) Vì \(\Delta ADE=\Delta EFC\left(cmt\right)\)
=> AE = EC (hai cạnh tương ứng)
Câu b hình như là tam giác ADE=tam giác EFC đó mk nghĩ vậy
có thể giúp mk nhanh được ko mk đang rất cần thanks