Cho tam giác ABC qua một điểm O nằm bên trong tam giác dựng các đường thẳng AO,BO,CO cắt BC,AC,AB tương ứng tại M,N,K
CMR: \(\frac{OM}{AM}+\frac{ON}{BN}+\frac{IK}{CK}=1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình vẽ bạn thay điểm P thành điểm K nhé.
Ta có:
\(\frac{S_{BOC}}{S_{ABC}}=\frac{\frac{1}{2}BC.OM}{\frac{1}{2}BC.AM}\)
\(\Rightarrow\frac{S_{BOC}}{S_{ABC}}=\frac{OM}{AM}.\)
Lại có:
\(\frac{S_{AOC}}{S_{ABC}}=\frac{\frac{1}{2}ON.CM}{\frac{1}{2}BN.CM}\)
\(\Rightarrow\frac{S_{AOC}}{S_{ABC}}=\frac{\frac{1}{2}ON}{\frac{1}{2}BN}\)
\(\Rightarrow\frac{S_{AOC}}{S_{ABC}}=\frac{ON}{BN}.\)
Có:
\(\frac{S_{AOB}}{S_{ABC}}=\frac{\frac{1}{2}OK.AB}{\frac{1}{2}CK.AB}\)
\(\Rightarrow\frac{S_{AOB}=\frac{1}{2}OK}{S_{ABC}=\frac{1}{2}CK}\)
\(\Rightarrow\frac{S_{AOB}}{S_{ABC}}=\frac{OK}{CK}.\)
\(\Rightarrow\frac{OM}{AM}+\frac{ON}{BN}+\frac{OK}{CK}=\frac{S_{BOC}}{S_{ABC}}+\frac{S_{AOC}}{S_{ABC}}+\frac{S_{AOB}}{S_{ABC}}\)
\(\Rightarrow\frac{OM}{AM}+\frac{ON}{BN}+\frac{OK}{CK}=\frac{S_{BOC}+S_{AOC}+S_{AOB}}{S_{ABC}}\)
\(\Rightarrow\frac{OM}{AM}+\frac{ON}{BN}+\frac{OK}{CK}=\frac{S_{ABC}}{S_{ABC}}\)
\(\Rightarrow\frac{OM}{AM}+\frac{ON}{BN}+\frac{OK}{CK}=1\left(đpcm\right).\)
Chúc bạn học tốt!
Ta có : \(\frac{OM}{AM}=\frac{S_{BOC}}{S_{ABC}}\) ; \(\frac{ON}{BN}=\frac{S_{AOC}}{S_{ABC}}\) ; \(\frac{OP}{CP}=\frac{S_{AOB}}{S_{ABC}}\)
\(\Rightarrow\frac{OM}{AM}+\frac{ON}{BN}+\frac{OP}{CP}=\frac{S_{ABC}}{S_{ABC}}=1\)
Áp dụng bđt Bunhiacopxki, ta có :
\(\frac{AM}{OM}+\frac{BN}{ON}+\frac{CP}{OP}=\left(\frac{AM}{OM}+\frac{BN}{ON}+\frac{CP}{OP}\right).\left(\frac{OM}{AM}+\frac{ON}{BN}+\frac{OP}{CP}\right)\ge\)
\(\ge\left(\sqrt{\frac{AM}{OM}.\frac{OM}{AM}}+\sqrt{\frac{BN}{ON}.\frac{ON}{BN}}+\sqrt{\frac{CP}{OP}.\frac{OP}{CP}}\right)^2=\left(1+1+1\right)^2=9\)
Vậy \(\frac{AM}{OM}+\frac{BN}{ON}+\frac{CP}{OP}\ge9\) (đpcm)
Từ A kẻ đường thẳng // BC cắt BO, CO kéo dài tại P và Q
Theo định lý Thales ta có: \(\frac{DB}{DC}=\frac{AP}{AQ},\frac{EC}{EA}=\frac{BC}{AP},\frac{FA}{FB}=\frac{AQ}{BC}\)
Nhân 3 đẳng thức vs nhau ta đc:
\(\frac{DB}{DC}.\frac{EC}{EA}.\frac{FA}{FB}=\frac{AP}{AQ}.\frac{BC}{AP}.\frac{AQ}{BC}=1\) ( ĐPCM)
Dễ thấy:\(\frac{OM}{AM}=\frac{S_{BOC}}{S_{ABC}};\frac{OB}{BN}=\frac{S_{AOC}}{S_{ABC}};\frac{OK}{CK}=\frac{S_{AOB}}{S_{ABC}}\)
\(\Rightarrow\frac{OM}{AM}+\frac{ON}{BN}+\frac{OK}{CK}=\frac{S_{ABC}}{S_{ABC}}=1\)
sao dễ thấy vậy bạn mình k hiểu