K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2020

Hình vẽ bạn thay điểm P thành điểm K nhé.

Ta có:

\(\frac{S_{BOC}}{S_{ABC}}=\frac{\frac{1}{2}BC.OM}{\frac{1}{2}BC.AM}\)

\(\Rightarrow\frac{S_{BOC}}{S_{ABC}}=\frac{OM}{AM}.\)

Lại có:

\(\frac{S_{AOC}}{S_{ABC}}=\frac{\frac{1}{2}ON.CM}{\frac{1}{2}BN.CM}\)

\(\Rightarrow\frac{S_{AOC}}{S_{ABC}}=\frac{\frac{1}{2}ON}{\frac{1}{2}BN}\)

\(\Rightarrow\frac{S_{AOC}}{S_{ABC}}=\frac{ON}{BN}.\)

Có:

\(\frac{S_{AOB}}{S_{ABC}}=\frac{\frac{1}{2}OK.AB}{\frac{1}{2}CK.AB}\)

\(\Rightarrow\frac{S_{AOB}=\frac{1}{2}OK}{S_{ABC}=\frac{1}{2}CK}\)

\(\Rightarrow\frac{S_{AOB}}{S_{ABC}}=\frac{OK}{CK}.\)

\(\Rightarrow\frac{OM}{AM}+\frac{ON}{BN}+\frac{OK}{CK}=\frac{S_{BOC}}{S_{ABC}}+\frac{S_{AOC}}{S_{ABC}}+\frac{S_{AOB}}{S_{ABC}}\)

\(\Rightarrow\frac{OM}{AM}+\frac{ON}{BN}+\frac{OK}{CK}=\frac{S_{BOC}+S_{AOC}+S_{AOB}}{S_{ABC}}\)

\(\Rightarrow\frac{OM}{AM}+\frac{ON}{BN}+\frac{OK}{CK}=\frac{S_{ABC}}{S_{ABC}}\)

\(\Rightarrow\frac{OM}{AM}+\frac{ON}{BN}+\frac{OK}{CK}=1\left(đpcm\right).\)

Chúc bạn học tốt!

27 tháng 1 2020

Dễ thấy:\(\frac{OM}{AM}=\frac{S_{BOC}}{S_{ABC}};\frac{OB}{BN}=\frac{S_{AOC}}{S_{ABC}};\frac{OK}{CK}=\frac{S_{AOB}}{S_{ABC}}\)

\(\Rightarrow\frac{OM}{AM}+\frac{ON}{BN}+\frac{OK}{CK}=\frac{S_{ABC}}{S_{ABC}}=1\)

11 tháng 7 2022

sao dễ thấy vậy bạn mình k hiểu

 

29 tháng 9 2016

A B C M N P O

Ta có : \(\frac{OM}{AM}=\frac{S_{BOC}}{S_{ABC}}\) ; \(\frac{ON}{BN}=\frac{S_{AOC}}{S_{ABC}}\) ; \(\frac{OP}{CP}=\frac{S_{AOB}}{S_{ABC}}\)

\(\Rightarrow\frac{OM}{AM}+\frac{ON}{BN}+\frac{OP}{CP}=\frac{S_{ABC}}{S_{ABC}}=1\)

Áp dụng bđt Bunhiacopxki, ta có : 

\(\frac{AM}{OM}+\frac{BN}{ON}+\frac{CP}{OP}=\left(\frac{AM}{OM}+\frac{BN}{ON}+\frac{CP}{OP}\right).\left(\frac{OM}{AM}+\frac{ON}{BN}+\frac{OP}{CP}\right)\ge\)

\(\ge\left(\sqrt{\frac{AM}{OM}.\frac{OM}{AM}}+\sqrt{\frac{BN}{ON}.\frac{ON}{BN}}+\sqrt{\frac{CP}{OP}.\frac{OP}{CP}}\right)^2=\left(1+1+1\right)^2=9\)

Vậy \(\frac{AM}{OM}+\frac{BN}{ON}+\frac{CP}{OP}\ge9\) (đpcm)

9 tháng 1 2018

Neu đề bài trên kia là cho >_ 6 thì chứng minh thế nào

8 tháng 8 2016

từ 0 hạ các dduownmgf vuông góc
sử dụng ta let + S tam giác để tính thôi bạn